Component	Math
Grade Level:	$2^{\text {nd }}$ Grade
Lesson Title:	Math Fun! \#1
Focus:	Fractions

Materials:

White boards
Crayolas
Socks

Vocabulary Notebooks
Activity at end of lesson plan
decks of cards dice

Opening
State the objective
Today we are going to practice using our math vocabulary and math skills in working with fractions.

Gain prior knowledge by asking students the following questions

What do you know about fractions? What does it mean if you get $1 / 2$ of something? What does it mean if you get $1 / 4$ of something? A fraction means that you have a part of something. Why is there an adage that says if two people want to split something, the person who does the dividing gets to pick last? Does that seem fair to you? How many dimes are in a dollar? Each dime represents $1 / 10$ of the dollar. What fraction is 3 dimes?

Content (the "Meat")	
Problem of the Day Sue knows that $24+4$ is the same as 28 . Show other ways you can make 28 using numbers, pictures, and words.	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly.
Fact Practice Addition War - Divide students into pairs. Give each pair a deck of cards without face cards and jokers. - Shuffle the deck and divide the cards evenly between the two players - On go, the players turn over the cards at the same time - Students add the 2 numbers that have been turned up - First person to give the answer either wins the cards because the answer is correct, or has to turn over 2 cards because he/she gave the wrong answer - At the end of round, students may reshuffle the pile of cards that they have - Play can continue until one player has all cards or time has called	Check in about what is happening and what they are thinking. Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

Math Vocabulary

Word for Today: fraction

Description: The term fraction means part of a whole. When we write a fraction we write one number on top of the other like this: $\frac{1}{2}$. Each of the numbers stands for something special. The bottom number is called the denominator and it tells you the number of parts that the whole was divided into. If you were looking at $1 / 2$ of a pizza, it would mean that the pizza s divided into 2 parts. The 1 , which is the numerator, tells you how many parts you have. So in the case of $1 / 2$ of the pizza, the pizza is divided into 2 parts and the 1 tells you that you have one of the two parts.
Create an entry in the Vocabulary Notebook to share your understanding of the word fraction.

Vocabulary Notebook Sample:

New Wordfraction	My Description Fraction is a word that refers to a part of a whole.
I will eat only a fraction of the whole pizza.	Drawing
Personal Connection	

Activity
Fraction

Drawing and Identifying Fractions

It is essential that students are able to identify and represent fractional parts. Be sure that students understand that the term fraction refers to a "part of a whole".

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Draw It

Directions:

1. Divide students into pairs.
2. Give each pair a white board and a deck of Draw It cards.
3. Player one draws a card and follows the directions, drawing onto the white board. If the drawing is correct, then the player keeps the card.
4. Player two repeats the process
5. Game is over when all cards have been drawn.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Consult 4 Kids Lesson Plans

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.
$2^{\text {nd }}$ Grade Fractions

Draw a pizza (circular). Mark and color $1 / 2$ of the pizza.	Use any kind of drawing that you would like to show the fraction $\frac{7}{10}$
Draw 8 shapes. Color in $1 / 2$ of	
them	Draw 12 shapes. Color in $\frac{2}{3}$ of the
shapes.	
Use any kind of drawing you like to show the fraction $\frac{3}{5}$	Draw a picture of a board. Mark and color in $\frac{3}{4}$ of board.
Draw 12 shapes and color in $\frac{1}{3}$ of	Draw a pizza. Divide it into 8 them. pieces. Color in $\frac{3}{8}$ of the pizza.

Use any kind of drawing that you would like to show the fraction $\frac{5}{10}$. Draw 18 circles. Color in $\frac{5}{6}$ of the What is another way you could write the number you have marked? circles.

Use any kind of drawing that you want to show the fraction $\frac{7}{8}$

Draw 24 stars. Circle $\frac{1}{6}$ of them.
Draw 10 dimes. Circle $\frac{9}{10}$ of them. How much money does this represent?

Draw 16 squares. Color in $\frac{7}{8}$ of them.

Draw a picture that illustrates $\frac{4}{9}$

Component	Math
Grade Level:	$2^{\text {nd }}$ Grade
Lesson Title:	Math Fun! \#2
Focus:	Fractions

Materials:	
White boards	Vocabulary Notebooks
Crayolas	Dice
Socks	Activity at the end of the lesson plan

Opening
State the objective
Today we are going to practice using our math vocabulary and math skills in fractions.

Gain prior knowledge by asking students the following questions

What do you know about fractions? What does it mean if you get $1 / 2$ of something? What does it mean if you get $1 / 4$ of something? A fraction means that you have a part of something. Why is there an adage that says if two people want to split something, the person who does the dividing gets to pick last? Does that seem fair to you?

Content (the "Meat")	
Problem of the Day What is the value of 7 in the number $276 ?$	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly.
Fact Practice Spokes on a Wheel 1. Divide students into pairs 2. On a white board, student draws a small circle with 9 spokes coming out of it (should look like a bicycle tire) 3. Have students choose to put a 6,7 or 8 in the center circle 4. Student rolls two dice and adds the pips (dots) 5. Taking this total, student writes a math problem on one of the spokes (eg. 7 is in the circle and students rolls a 3 and 5 which totals 8 . The spoke equation would look like $7+8=15$ 6. Process continues until all spokes have an equation	Check in about what they are thinking. Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.
Math Vocabulary Word for Today: denominator Description: The term denominator is used to describe the bottom number of a fraction. It	It is important to review academic math vocabulary often throughout the day.

is the number that tells you how many parts the whole has been divided into. In the fraction $1 / 2$ you know that the whole thing has been divided into 2 parts. In the fraction $1 / 4$ you would know that the whole thing had been divided into 4 parts. If the denominator of a fraction was 8 , how many parts would you have in the whole thing?
Students complete the Vocabulary Notebook, entering the word denominator
Vocabulary Notebook Sample:

New Word	My Description denominator The bottom number of a fraction, the number of pieces in the whole thing.
Personal Connection When you have dimes, the denominator is 10 when you talk about dimes in a dollar.	Drawing

Activity
 Fractions

Drawing and Identifying Fractions

It is essential that students are able to identify and represent fractional parts. Be sure that students understand that the term fraction refers to a "part of a whole".

Draw It

Directions:

1. Divide students into pairs.
2. Give each pair a white board and a deck of Draw It cards.
3. Player one draws a card and follows the directions, drawing onto the white board. If the drawing is correct, then the player keeps the card.
4. Player two repeats the process
5. Game is over when all cards have been drawn.

Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation). Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

2nd Grade Fractions

Draw a pizza (circular). Mark and color $1 / 2$ of the pizza.	Use any kind of drawing that you would like to show the fraction $\frac{7}{10}$
Draw 8 shapes. Color in $1 / 20$ of them	Draw 12 shapes. Color in $\frac{2}{3}$ of the shapes.
Use any kind of drawing you like to show the fraction $\frac{3}{5}$	Draw a picture of a board. Mark and color in $3 / 4$ of board.

Draw 12 shapes and color in $\frac{1}{3}$ of them.

Draw a pizza. Divide it into 8 pieces. Color in $\frac{3}{8}$ of the pizza.

Use any kind of drawing that you would like to show the fraction $\frac{5}{10}$. Draw 18 circles. Color in $\frac{5}{6}$ of the What is another way you could write the number you have marked? circles.

Use any kind of drawing that you want to show the fraction $\frac{7}{8}$

Draw 24 stars. Circle $\frac{1}{6}$ of them.
Draw 10 dimes. Circle $\frac{9}{10}$ of them. How much money does this represent?

Draw 16 squares. Color in $\frac{7}{8}$ of them.

Draw a picture that illustrates $\frac{4}{9}$

Component	Math
Grade Level:	$2^{\text {nd }}$ Grade
Lesson Title:	Math Fun! \#3
Focus:	Fractions

Materials:

White boards
Crayolas
Cards

Vocabulary Notebooks

Socks (erasers for white board)
Activity at the end of the lesson plan

Opening
State the objective
Today we are going to practice using our math vocabulary and math skills fractions.
Gain prior knowledge by asking students the following questions
What do you know about fractions? What does it mean if you get $1 / 2$ of something? What does it mean if you get $1 / 4$ of
something? A fraction means that you have a part of something. When things are divided everyone is interested in being
sure that everyone gets a fair share. In order to be sure, we compare each person's share of the whole. For example, let's
say you thought the pizza needed to be divided in $1 / 2$. Then a 3rd person comes along and you need to be sure that
everyone has the same amount. To do that you could compare fractions and decide how to divide the pizza in order to
give everyone the same amount.

Content (the "Meat")

Problem of the Day

Find the rule for the table. Then complete the table. How did you find the rule?

In	Out
15	12
13	10
11	
9	
7	

Fact Practice

Fore-header

1. Divide students into trios. Give each trio a deck of cards without face cards and jokers.
2. Shuffle the deck and give all of the cards to the referee who will be "judging" the contest
3. On go, players are each handed a card by the referee and WITHOUT looking, put the card face out on his/her forehead
4. The referee adds the two numbers together and states the answer
5. Each player looks at the other person's exposed number and names his/her own number
6. Person who wins (accuracy and time), collects both cards

*Activity \rightarrow Teachable Moment(s) throughout

During the lesson check in with students repeatedly.
Check in about what is happening and what they are thinking.
Take advantage of any teachable moments.
Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking.
When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.
7. Play continues until all cards are gone.
8. Players can repeat play (if there is another time) with each other so each has an opportunity to be both a player and referee

Math Vocabulary

Word for Today: numerator

Description: The term numerator refers to the number that is on the top in a fraction. The numerator names the number of the pieces you have. In the fraction $1 / 2$, you have 1 of the 2 pieces. In the fraction $3 / 4$, you have 3 or the 4 parts. How many pieces would you have in the following fractions: (remember to look at the numerator) $\frac{7}{8}, \frac{2}{3}$, and $\frac{5}{6}$.
Create an entry for the term "numerator" in your Vocabulary Notebook.
Vocabulary Notebook Sample:

New Wordnumerator	My Description A numerator is the top number of a fraction and tells you how many pieces you have.
Personal Connection When I eat pizza I eat just a fraction of the whole pizza.	Drawing

Activity

Fractions

Comparison and Equivalent

Some fractions are equivalent and others are not. For example, if you have a dollar, you could have $1 / 2$ of a dollar by having $\frac{2}{4}$ of the quarters, $\frac{5}{10}$ of the dimes, $\frac{10}{20}$ of the nickels, and $\frac{50}{100}$ of the pennies. You would also have $1 / 2$ if you had $\frac{3}{6}, \frac{4}{8}$, or $\frac{7}{14}$. These fractions are all equivalent. When you compare fractions you can also discover that you have fractions that are not equivalent. For example, $\frac{3}{5}$ and $1 / 2$ are not equivalent. We can determine that if we look at the comparison below:
\square
Today's activity will have students determine if fractions are equivalent and if they are not, then which is the largest fraction.

Compare

Directions

1. Divide the students into pairs
2. Give each pair a set of Compare cards
3. Player one draws a Compare card and determines if the fractions are equivalent and if not, which of the fractions is largest.
4. Player 2 check Player 1's answer. If they agree play moves to Player 2. If not, then they discuss and determine the correct answer.
5. Player 2 then continues
6. Activity is over when all cards have been worked through.

Closing

Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?

Debrief

Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

2nd Grade Compare Fractions

Component	Math
Grade Level:	$2^{\text {nd }}$ Grade
Lesson Title:	Math Fun! \#4
Focus:	Fractions

Materials:	
White boards	Vocabulary Notebooks
Crayolas	Decks of cards
Dice	Socks (use as erasers)

Opening
State the objective
Today we are going to practice using our math vocabulary and math skills in addition and subtraction
Gain prior knowledge by asking students the following questions
What do you know about fractions? What does it mean if you get $1 / 2$ of something? What does it mean if you get $1 / 4$ of
something? A fraction means that you have a part of something. When things are divided everyone is interested in being
sure that everyone gets a fair share. In order to be sure, we compare to the items. For example, let's say you thought the
pizza needed to be divided in $1 / 2$. Then a 3rd person comes along and you need to be sure that everyone has the same
amount. To do that you could compare fractions and decide how to divide the pizza in order to give everyone the same
amount.

Content (the "Meat")	
Problem of the Day Select one of the three symbols below to complete the following number sentence. 73 67	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly. Check in about what is happening and what they are thinking.
Fact Practice Addition Ladder 1. Give each student a white board (include marker or crayola) 2. Student should draw a ladder like the one below	Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

$\longdiv { 1 }$ 3. Have student roll 2 dice, total the pips and then add that number to each of the numbers in the ladder, writing the sum to the right of the number	
Word for Today: compare Description: The term compare is used when we take a look at two or more groups of things. We can compare them to see how much alike or different they are. We can compare fractions to determine which is the largest.	
Create an entry in your Vocabulary Notebook for the word compare. Review it with a peer and if need be make corrections or additions.	
New Word compare	My Description How things are alike, same, less than, greater than, looking at things in relationship with each other
Personal Connection We have the same money when we compare 2 quarters and 5 dimes.	Drawing

Activity
 Fractions

Comparison and Equivalent

Some fractions are equivalent and others are not. For example, if you have a dollar, you could have $1 / 2$ of a dollar by having $\frac{2}{4}$ of the quarters, $\frac{5}{10}$ of the dimes, $\frac{10}{20}$ of the nickels, and $\frac{50}{100}$ of the pennies. You would also have $1 / 2$ if you had $\frac{3}{6}, \frac{4}{8}$, or $\frac{7}{14}$. These fractions are all equivalent. When you compare fractions you can also discover that you have fractions that are not equivalent. For example, $\frac{3}{5}$ and $1 / 2$ are not equivalent. We can determine that if we look at the comparison below:

Today's activity will have students determine if fractions are equivalent and if they are not, then which is the largest fraction.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Compare

Directions

1. Divide the students into pairs
2. Give each pair a set of Compare cards
3. Player one draws a Compare card and determines if the fractions are equivalent and if not, which of the fractions is largest.
4. Player 2 check Player 1's answer. If they agree play moves to Player 2. If not, then they discuss and determine the correct answer.
5. Player 2 then continues
6. Activity is over when all cards have been worked through.

Closing

Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?

Debrief

Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.
$2^{\text {nd }}$ Grade Compare Fractions

If the drawings below are candy, which is more: $\frac{1}{3}$ or $\frac{3}{5}$	Would you rather have $\frac{5}{6}$ of a candy bar or $\frac{7}{8}$ of a candy bar.
$\square \square$	
Which is more $\frac{2}{3}$ or $\frac{8}{12}$?	Which is more $\frac{4}{6}$ or $\frac{7}{8}$?
\square	
Is it more to have $\frac{1}{4}$ or $\frac{3}{8}$?	Is it more to have $\frac{2}{3}$ or $\frac{4}{6}$?
$1-1$	-
$\square\|-\|\quad\|$	\square

Component	Math
Grade Level:	$2^{\text {nd }}$ Grade
Lesson Title:	Math Fun! \#5
Focus:	Fractions

Materials:

White boards
Crayolas
Activity at the end of the lesson plan
Playing cards
Socks (use as erasers)

Opening
State the objective
Today we are going to practice using our math vocabulary and math skills in addition and subtraction
Gain prior knowledge by asking students the following questions
What do you know about fractions? What does it mean if you get $1 / 2$ of something? What does it mean if you get $1 / 4$ of
something? A fraction means that you have a part of something. When things are divided everyone is interested in being
sure that everyone gets a fair share. In order to be sure, we compare to the items. For example, let's say you thought the
pizza needed to be divided in $1 / 2$. Then a 3rd person comes along and you need to be sure that everyone has the same
amount. To do that you could compare fractions and decide how to divide the pizza in order to give everyone the same
amount.

Content (the "Meat")	
Reablem of the Day	*Activity \rightarrow Teachable Moment(s) throughout
Read the number. Use pictures, numbers, or words to show the number two other ways.	During the lesson check in with students repeatedly. Check in about what is
happening and what they are	
thinking.	

Math Vocabulary

Word for Today: whole

Description: The term whole refers to one whole thing. For example, before you cut a pizza up you have a whole pizza. When they deliver a pizza to you, even though it has been cut you still have a whole pizza but you have $\frac{10}{10}$ If you have all 10 pieces. If you were to order 3 pizzas you would have a total of 30 pieces. If at the end of lunch, you might have 3 pieces from one pizza, 5 pieces from the second pizza and then 4 pieces from the 3 rd pizza. You would have a total of 12 pieces or written as a fraction $\frac{12}{10}$. This would mean that you had more than a whole pizza. You might also end up with just 7 pieces or $\frac{7}{10}$ which would be less than one whole.
Students should complete the Vocabulary Notebook
Vocabulary Notebook Sample:

New Word	My Description		
whole		\quad Drawing \quad	Personal Connection that is all in one piece is a whole
:---:			
I divided the whole cookie into 3 equal			
pieces and we each ate $\frac{1}{3}$.			

Activity
Fractions
The word fraction means part of a whole. We divide things all of the time-sometimes we divide a single item, for example, we cut a sandwich in $1 / 2$ and share with a friend. We can also divide a package of something, giving equal amount of the what is in the package to each person. For example, if we had a package of 20 cookies and 5 people to share them with, each person would get 4 cookies, and while the cookie they received may be a whole cookie, they only received $\frac{4}{20}$ of all of the cookies. This fraction tells us that there were a total number of cookies $=20$, which is the denominator-the number you would have if you had them all. We also know by looking at the fraction that a single person had 4 of the 20 cookies it would take to have them all. The 4 is the numerator and names the number of parts a person has. If the top number (the numerator) and the bottom number (the denominator) are the same: $\frac{20}{20}$ then you have the whole thing. If the top number is larger than the bottom number, if the numerator is larger than the denominator, $\frac{23}{20}$ then you have more than 1 . In the case of the cookies you would have more than 1 package.
Do several examples with the students, asking them if the fraction is greater than one, less than one, or exactly one.

Greater, Less, or Exactly One

Directions:

It is important to review academic math vocabulary often throughout the day Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation)
Vocabulary Notebooks can be made from $1 / 2$ of a composition book

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

1. Divide students into pairs
2. Give each pair a Greater, Less, or Exactly One Game Board on Cards
3. Shuffle the cards and place them to the right of the game board
4. Player 1 draws a card, determines whether it is greater than 1 , less than 1 , or exactly one and places the game card in the correct column on the game board.
5. Player 2 then continues in the same manner
6. Play is over when all cards have been placed on the game board

Closing

Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?

Debrief

Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.
$2^{\text {nd }}$ Grade Greater, Less, Exactly One Game Board

Greater	Less	Exactly One

$\frac{5}{6}$	$\frac{2}{3}$	$\frac{1}{4}$	$\frac{3}{8}$
$\frac{5}{8}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{2}{5}$
$\frac{3}{5}$	$\frac{7}{8}$	$\frac{1}{3}$	$\frac{3}{6}$
$\frac{4}{5}$	$\frac{2}{2}$	$\frac{3}{3}$	$\frac{4}{4}$
$\frac{5}{5}$	$\frac{6}{6}$	$\frac{8}{8}$	$\frac{7}{7}$
$\frac{7}{6}$	$\frac{5}{3}$	$\frac{8}{4}$	$\frac{9}{8}$
$\frac{11}{8}$	$\frac{3}{2}$	$\frac{5}{4}$	$\frac{6}{5}$
$\frac{8}{5}$	$\frac{12}{8}$	$\frac{4}{3}$	$\frac{9}{6}$

Component	Math
Grade Level:	$2^{\text {nd }}$ Grade
Lesson Title:	Math Fun! \#6
Focus:	Fractions

Materials:		
White boards	Vocabulary Notebooks	Number Hunt Game Board
Crayolas	12 sided dice (1 for each child)	
Activity at the end of the lesson plan	Sock (for erasers)	

Opening
State the objective
Today we are going to practice using our math vocabulary and math skills in working with fractions.
Gain prior knowledge by asking students the following questions
What do you know about fractions? What does it mean if you get $1 / 2$ of something? What does it mean if you get $1 / 4$ of
something? A fraction means that you have a part of something. When things are divided everyone in interested in being
sure that everyone gets a fair share. In order to be sure, we compare to the items. For example, let's say you thought the
pizza needed to be divided in $1 / 2$. Then a 3rd person comes along and you need to be sure that everyone has the same
amount. To do that you could compare fractions and decide how to divide the pizza in order to give everyone the same
amount. What does it mean if you say that fractions are exactly the same?

Content (the "Meat")	
Problem of the Day John will be going to the movie with his friend. Will he need to spend 2 minutes, 2 days, or 2 hours at the movie theater?	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly.
Fact Practice Number Hunt 1. Divide students into pairs 2. Each pair needs a Number Hunt sheet (attached to this lesson plans) 3. Player rolls two, 12 -sided dice. 4. Player adds or subtracts the two numbers. 5. If the number is not yet covered, then player may cover the number. 6. Next player repeats steps 1-3. 7. Winner is determined by who has the most numbers covered.	Check in about what is happening and what they are thinking. Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

Math Vocabulary

Word for Today: exactly

Description: Exactly is a term that means equal, that things have exactly the same value. For example $\frac{2}{4}$ of dollar is exactly the same as a $1 / 2$ dollar; $\frac{2}{6}$ is exactly the same as $\frac{1}{3}$, and $\frac{4}{10}$ is exactly the same as $\frac{2}{5}$. When dividing things equally, we want to be sure that they are exactly alike.

Student complete an entry in the Vocabulary Notebook for the term exactly.
Vocabulary Notebook Sample:

New Wordexactly	My Description Exactly means that something is precisely the same as something else.
$1 / 2$ is exactly $\frac{2}{4}$	Drawing
Personal Connection	$\frac{\mathbf{1}}{\mathbf{2}}=\frac{\mathbf{2}}{\mathbf{4}}$

Activity

Fraction

The word fraction means part of a whole. We divide things all of the time-sometimes we divide a single item, for example, we cut a sandwich in $1 / 2$ and share with a friend. We can also divide a package of something, giving equal amount of the what is in the package to each person. For example, if we had a package of 20 cookies and 5 people to share them with, each person would get 4 cookies, and while the cookie they received may be a whole cookie, they only received $\frac{4}{20}$ of all of the cookies. This fraction tells us that there were a total number of cookies $=20$, which is the denominator-the number you would have if you had them all. We also know by looking at the fraction that a single person had 4 of the 20 cookies it would take to have them all. The 4 is the numerator and names the number of parts a person has. If the top number (the numerator) and the bottom number (the denominator) are the same: $\frac{20}{20}$ then you have the whole thing. If the top number is larger than the bottom number, if the numerator is larger than the denominator, $\frac{23}{20}$ then you have more than 1 . In the case of the cookies you would have more than 1 package.
Do several examples with the students, asking them if the fraction is greater than one, less than one, or exactly one.

Greater, Less, or Exactly One
 Directions:

1. Divide students into pairs
2. Give each pair a Greater, Less, or Exactly One Game Board on Cards
3. Shuffle the cards and place them to the right of the game board
4. Player 1 draws a card, determines whether it is greater, less, or exactly one and places the game card in the correct column on the game board.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
5. Player 2 then continues in the same manner

Play is over when all cards have been placed on the game board

Closing

Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?

Debrief

Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Number Hunt

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Number Hunt

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

$2^{\text {nd }}$ Grade Greater, Less, Exactly One Game Board

Greater	Less	Exactly One

$\frac{5}{6}$	$\frac{2}{3}$	$\frac{1}{4}$	$\frac{3}{8}$
$\frac{5}{8}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{2}{5}$
$\frac{3}{5}$	$\frac{7}{8}$	$\frac{1}{3}$	$\frac{3}{6}$
$\frac{4}{5}$	$\frac{2}{2}$	$\frac{3}{3}$	$\frac{4}{4}$
$\frac{5}{5}$	$\frac{6}{6}$	$\frac{8}{8}$	$\frac{7}{7}$
$\frac{7}{6}$	$\frac{5}{3}$	$\frac{8}{4}$	$\frac{9}{8}$
$\frac{11}{8}$	$\frac{3}{2}$	$\frac{5}{4}$	$\frac{6}{5}$
$\frac{8}{5}$	$\frac{12}{8}$	$\frac{4}{3}$	$\frac{9}{6}$

Component	Math
Grade Level:	$2^{\text {nd }}$ Grade
Lesson Title:	Math Fun! \#7
Focus:	Multiplication

Materials:		
White boards	Vocabulary Notebooks	Pencils
Crayolas	Decks of cards	Activity at end of lesson plan
Game tokens	Socks (use as erasers)	

Opening

State the objective

Today we are going to practice using our math vocabulary and math skills in addition and subtraction

Gain prior knowledge by asking students the following questions

Multiplication is a math operation that is really repeated addition. For example you can say $4+4+4=12$ or you can say 3 $x 4+12$. The three tells you that you should add the number 4 , three times. What does the problem $3+3+3+3+3$ mean in multiplication? What does the problem $2+2+2+2+2+2+2$ mean in multiplication? How about this one: 4 $+4+4+4$?

Content (the "Meat")	
Problem of the Day Use addition to check the answer for $55-27=28$. Is the answer correct? Explain how you figured it out.	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly.
Fact Practice Draw! 1. Divide students into pairs and give each pair a deck of cards 2. Remove the face cards and jokers from the deck of cards. 3. Shuffle the deck. 4. Decide who will go first. 5. First player draws two cards. 6. Student adds or subtracts the cards. 7. Student writes his/her problem on the white board, writing a complete number sentence. 8. Students take turns drawing cards and creating problems.	Check in about what is happening and what they are thinking. Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.
Word for Today: skip counting Math Vocabulary	It is important to review academic math vocabulary often throughout the day

Description: The term "skip counting" means counting by a number other than 1. For example, you can skip count by 10 s, and you would say $10,20,30,40,50,60,70,80,90$, 100. You can skip count by 5 s and you would say $5,10,15,20,25,30,35,40,45,50$. What numbers would you say if you skip counted by 2 s ?
Create the entry for the term skip counting in the Vocabulary Notebook.
Vocabulary Notebook Sample:

New Word	My Description skip counting
$5,10,15,20,25$ and $3,6,9,12,15$ or both examples of skip counting	
Personal Connection	Drawing
When I skip count by 5s, I say my age:	
$5,10$.	

Activity
 Multiplication

Skip Counting

Skip counting is counting by a number other than 1's. Skip counting can help you count things more quickly and skip counting can also help you learn how to multiply. When you skip count you leave out some of the numbers. The most common skip counting is counting by 2's, 5's and 10's, although you can skip count by any other numbers.

Skip Counting

Directions:

1. Divide students into pairs
2. Give each pair a deck of Skip counting cards and a die
3. Pairs lay the cards out in front of them in a grid that looks like the following:

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

4. Pairs work together, rolling the die and skip counting by the number rolled (in this activity a 1 is a 7) When they skip count, they need to pull out the numbers that they would be saying as they count. For example, if they rolled the number 7 , they would pull out the numbers $7,14,21,28,35,42$ and 49.
5. Play should continue for about 15-20 minutes.

Complete the Vocabulary notebook for each word. When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Consult 4 Kids Lesson Plans
$2^{\text {nd }}$ Grade Skip Counting Cards

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30

Consult 4 Kids Lesson Plans

31	32	33	34	35
36	37	38	39	40
41	42	43	44	45
46	47	48	49	50

Component	Math
Grade Level:	$2^{\text {nd }}$ Grade
Lesson Title:	Math Fun! \#8
Focus:	Multiplication

Materials:	
White boards	Vocabulary Notebooks
Crayolas	Cards without tens, face cards and jokers
Activity at the end of this lesson plan	Socks (use as erasers)

Opening			
State the objective			
Today we are going to practice using our math vocabulary and math skills in addition and subtraction			
Gain prior knowledge by asking students the following questions			
Multiplication is a math operation that is really repeated addition. For example you can say $4+4+4=12$ or you can say 3			
x $4+12$. The three tells you that you should add the number 4, three times. What does the problem $5+5+5+5$ mean in			
multiplication? What does the problem $7+7+7$ mean in multiplication? How about this one: $3+3+3+3+3+3$?			

Content (the "Meat")				
What is the rule for the pattern below? How do you know you are right? Complete the				
pattern.	$\begin{array}{l}\text { *Activity } \rightarrow \text { Teachable } \\ \text { Moment(s) throughout }\end{array}$			
During the lesson check in				
with students repeatedly.				
Check in about what is			$\}$	happening and what they are
:---				
thinking.				

50 to 110 for a total of 160.	
Word for Today: multiples Description: The term multiples refers numbers together. The multiples are the you look at skip counting by 3s, you would those numbers are multiples of 3 . What Create the entry for the word multiples in Vocabulary Notebook Sample:	ocabulary numbers that you get when you multiply bers that you say when you are skip counting. If te $3,6,9,12,15,18,21,24,27$, and 30 ? All of he multiples of 5 ? What are the multiples of 10 ? Vocabulary Notebook.
New Word multiples	My Description Numbers you get when you skip count or multiply, like 4, 8, 12, 16
Personal Connection My age is a multiple of 3 . I am 12.	Drawing $3,6,9,12$

Activity
 Multiplication

Skip Counting

Skip counting is counting by a number other than 1's. Skip counting can help you count things more quickly and skip counting can also help you learn how to multiply. When you skip count you leave out some of the numbers. The most common skip counting is counting by 2's, 5's and 10's, although you can skip count by any other numbers.

Skip Counting

Directions:

1. Divide students into pairs
2. Give each pair a deck of Skip counting cards and a die
3. Pairs lay the cards out in front of them in a grid that looks like the following:

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

4. Pairs work together, rolling the die and skip counting by the number rolled (in this activity a 1 is a 7) When they skip count, they need to pull out the numbers that they would be saying as they count. For example, if they rolled the number 7 , they would pull out the numbers 7, 14, 21, 28, 35, 42 and 49.
5. Play should continue for about 15-20 minutes.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word. When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation) Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.
$2^{\text {nd }}$ Grade Skip Counting Cards

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30

Consult 4 Kids Lesson Plans
CONSULT
kIDS

31	32	33	34	35
36	37	38	39	40
41	42	43	44	45
46	47	48	49	50

Component	Math
Grade Level:	$2^{\text {nd }}$ Grade
Lesson Title:	Math Fun! \#9
Focus:	Money

Materials:

White boards
Crayolas
Socks

Vocabulary Notebooks

 cards (remove face card and jokers)Activity at the end of this lesson plan

Opening
State the objective
Today we are going to practice using our math vocabulary and math skills in working with money.
Gain prior knowledge by asking students the following questions
What do you know about money? If you were to go to the store, what would you expect to be able to purchase for $\$ 1.00$?
For $\$ 5.00$? For $\$ 10.00$? For $\$ 20.00$? For $\$ 100.00$. Why do you think what you think? Can you justify your thoughts?
How many different ways can you make a $\$ 1.00$? If you had access to only 1 quarter, what other coins would you need to
make $\$ 1.00$? Can you come up with more than one way? What way would take the most coins? What way would take the
least? How can you tell that you are on the right track for solving the problem? What are the basic operations that you
need to utilize when you work with money?

Content (the "Meat")

Problem of the Day

If a movie starts at 1:00 and ends at 3:30, how long does the movie last? Explain how you got your answer.

Fact Practice
 Draw!

1. Divide students into pairs and give each pair a deck of cards
2. Remove the face cards and jokers from the deck of cards.
3. Shuffle the deck.
4. Decide who will go first.
5. First player draws two cards.
6. Student adds or subtracts the cards.
7. Student writes his/her problem on the white board, writing a complete number sentence.
8. Students take turns drawing cards and creating problems.

*Activity \rightarrow Teachable Moment(s) throughout

During the lesson check in with students repeatedly.
Check in about what is happening and what they are thinking.
Take advantage of any teachable moments.
Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking.
When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

Math Vocabulary	
Word for Today: cents	
Description: The term cents refers to coins. In the United States we have four common coins, pennies, nickels, dimes, and quarters. Each one of them has a value in cents. Cents refers to what value a coin has in comparison to the 100 cents it would take to have a dollar.	
So a penny can be written $\$.01$ or 1ϕ and in a fraction it would look like this: $\frac{1}{100}$. A quarter is 25ϕ, or $\$.25$ or $\frac{25}{100}$. How would you write the value of a nickel? How would you write the value of a dime?	
Have students complete his/her Vocabulary Notebook, making an entry for the word "cents". Vocabulary Notebook Sample:	
New Word	My Description
cents	Pennies, nickels, dimes, quarters, all are coins that represent cents in a dollar
Personal Connection	Drawing
I have coins that add up 37\%.	

Activity
 Money

Money comes in coins and bills. Common bills in the United States are $\$ 1.00, \$ 5.00, \$ 10.00$, $\$ 20.00$, and $\$ 100.00$. When we think of coins, we think of pennies, nickels, dimes, and quarters, and sometimes a $1 / 2$ dollar. Coins represent a part of a dollar. In a dollar you have 100 pennies. A fraction to represent a penny looks like this: $\frac{1}{100}$, a nickel would look like this, $\frac{5}{100}$, a dime would look like this $\frac{10}{100}$, and a quarter would look like this, $\frac{25}{100}$. When we write cents, we can write it one of two ways: a penny is 1ϕ or $\$.01$, a nickel is 5ϕ or $\$.05$, a dime is 10ϕ or $\$.10$, and a quarter is 25ϕ or $\$.25$. The dollar sign and decimal point lets you know that the number refers to number and everything to the right of the decimal point is less than a dollar. The use of the symbol ϕ, might be used when you don't have a dollar being spent. Either way, ϕ or $\$$., you need to be able to read the amount of money that is being talked about.

Money Match

Directions:

1. Divide students into pairs
2. Give each pair a Money Match Game Board and deck of cards
3. Shuffle the cards and place to the right of the Money Match Game Board
4. Player 1 draws a card and finds it match on the Game Board and places a marker on the match
5. Player 2 continues in the same way

Play is complete when all items are matched.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.
$2^{\text {nd }}$ Grade Money Match Game Board

\$.23	5¢	\$. 14	26¢	\$. 30	49ф	\$. 01
13¢	Money Match Draw a card and determine which square on the board is a match. Place a marker on each match.					25¢
\$. 10						\$. 09
45¢						20¢
\$. 18						\$.06
15¢						29¢
\$.40	42ϕ	\$. 17	11¢	\$. 34	37\%	\$.35

2nd Grade Money Cards

23ϕ	$\$.05$	14ϕ	$\$.26$
30ϕ	$\$.49$	1ϕ	$\$.13$
$\$.25$	10ϕ	9ϕ	$\$.45$
$\$.20$	18ϕ	6ϕ	$\$.15$
$\$.29$	40ϕ	$\$.42$	17ϕ
$\$.11$	34ϕ	$\$.37$	35ϕ

Component	Math
Grade Level:	$2^{\text {nd }}$ Grade
Lesson Title:	Math Fun! \#10
Focus:	Money

Materials:
White boards
Crayolas
Socks

Vocabulary Notebooks
Double 9 Dominoes (attached) decks of cards

Activity at end of lesson plan

Opening

State the objective

Today we are going to practice using our math vocabulary and math skills in working with money.

Gain prior knowledge by asking students the following questions

What do you know about money? If you were to go to the store, what would you expect to be able to purchase for $\$ 1.00$? For $\$ 5.00$? For $\$ 10.00$? For $\$ 20.00$? For $\$ 100.00$. Why do you think what you think? Can you justify your thoughts? How many different ways can you make a $\$ 1.00$? If you had access to only 15 pennies, what other coins would you need to make $\$ 1.00$? Can you come up with more than one way? What way would take the most coins? What way would take the least? How can you tell that you are on the right track for solving the problem? What are the basic operations that you need to utilize when you work with money?

Content (the "Meat")		
$\text { Is } 58 \text { an o }$	Problem of the Day number? How do you know?	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly. Check in about what is happening and what they are thinking. Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.
There is a m for each pair and if possib Players sit a Dominoes a Each studen numbers rep Addition:	Fact Practice Spots and Dots of Double 9 Dominos attached to this lesson plan. You will need 1 full set dents in your class. It is recommended that you duplicate on card stock minate for use again in the future. from each other. ween them, face (or spots) down. s domino and writes the addition problem on their white board, adding the ted by the spots Example: Domino drawn is - •• 5	
	Math Vocabulary	It is important to review

Word for Today: dollar sign

Description: The term dollar sign refers to this symbol: \$. It represents money in the United States. It stands for dollars. A dollar sign precedes the amount of money that you are talking about. If you have five dollars, you would write it this way: \$5.00. The . (decimal point) and the two zeros let you know that there are no cents, just 5 whole dollars.
Create an entry for the term dollar sign in you Vocabulary Notebook.
Vocabulary Notebook Sample:

New Word dollar sign	My Description $\$$ is a symbol for money. It is an S with a vertical line through it.
Personal Connection I have saved $\$ 10.00$ in my piggy bank.	Drawing

Activity
 Money

Money

Money comes in coins and bills. Common bills in the United States are $\$ 1.00, \$ 5.00, \$ 10.00$, $\$ 20.00$, and $\$ 100.00$. When we think of coins, we think of pennies, nickels, dimes, and quarters, and sometimes a $1 / 2$ dollar. Coins represent a part of a dollar. In a dollar you have 100 pennies. A fraction to represent a penny looks like this: $\frac{1}{100}$, a nickel would look like this, $\frac{5}{100}$, a dime would look like this $\frac{10}{100}$, and a quarter would look like this, $\frac{25}{100}$. When we write cents, we can write it one of two ways: a penny is 1ϕ or $\$.01$, a nickel is 5ϕ or $\$.05$, a dime is 10ϕ or $\$.10$, and a quarter is 25ϕ or $\$.25$. The dollar sign and decimal point lets you know that the number refers to number and everything to the right of the decimal point is less than a dollar. The use of the symbol ϕ, might be used when you don't have a dollar being spent. Either way, ϕ or $\$$., you need to be able to read the amount of money that is being talked about.

Money Match

Directions:

1. Divide students into pairs
2. Give each pair a Money Match Game Board and deck of cards
3. Shuffle the cards and place to the right of the Money Match Game Board
4. Player 1 draws a card and finds it match on the Game Board and places a marker on the match
5. Player 2 continues in the same way
6. Play is complete when all items are matched.
academic math vocabulary often throughout the day.
Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Double 9 Dominoes

	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	
	\bullet	\bullet	\bullet	\bullet			
\bullet							
\bullet							
\bullet							

$\bullet \bullet \bullet$	$\bullet \bullet \bullet$			
$\bullet \bullet \bullet$	$\bullet \bullet \bullet$		\bullet	$\bullet \bullet$
$\bullet \bullet \bullet$	$\bullet \bullet \bullet$			
$\bullet \bullet \bullet$				
$\bullet \bullet \bullet$				
$\bullet \bullet \bullet$				

$2^{\text {nd }}$ Grade Money Match Game Board

\$.23	5¢	\$. 14	26¢	\$. 30	49ф	\$. 01
13¢	Money Match Draw a card and determine which square on the board is a match. Place a marker on each match.					25¢
\$. 10						\$. 09
45¢						20¢
\$. 18						\$.06
15¢						29¢
\$.40	42ϕ	\$. 17	11¢	\$. 34	37\%	\$.35

2nd Grade Money Cards

23ϕ	$\$.05$	14ϕ	$\$.26$
30ϕ	$\$.49$	1ϕ	$\$.13$
$\$.25$	10ϕ	9ϕ	$\$.45$
$\$.20$	18ϕ	6ϕ	$\$.15$
$\$.29$	40ϕ	$\$.42$	17ϕ
$\$.11$	34ϕ	$\$.37$	35ϕ

Component	Math
Grade Level:	$2^{\text {nd }}$ Grade
Lesson Title:	Math Fun!
Focus:	Review

Materials:

Materials for the games that students have learned this past few days

	Opening
Today we are going to have fun playing a game.	State the objective

Activity

Today is review day. Students will be able to select from the Fraction Games you played for the last 10 days. Ask students to select from:

Draw It
Compare
Greater, Less or Exactly One
Skip Counting
Money Match

Closing

Review
Say:

- Please recap what we did today.
- Did we achieve our objectives?

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.
