Component	Math
Grade Level:	3rd Grade
Lesson Title:	Multiplication and Division Time
Focus:	Multiplication and Division

Materials: White boards and Socks Crayolas	Vocabulary Notebooks dice

Opening
\quad State the objective
Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction,
multiplication, and division.
Gain prior knowledge by asking students the following questions
Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe
those things. What are some strategies that you use when you are trying to figure out how to solve a mathematics
problem?
How can you tell that you are on the right track for solving the problem?
What are the basic operations that you need to utilize during math?

Content (the "Meat")	
Problem of the Day Use <and > symbols to make the following statements be correct: 387 is less than 421 643 is greater than 631 296 is less than 581	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly. Check in about what is
Fact Practice Addition Ladder 1. Give each student a white board (include marker or crayola) 2. Student should draw a ladder like the one below	happening and what they are thinking. Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

numbers in the ladder, writing the sum to the right of the number.	
Math Vocabulary	
Word for Today: dividend	
Description: The term dividend is used to identify the number (the total) that is going to be divided in a division problem. For example: dividend \div divisor $=$ quotient	
The 16 is the dividend.	
Create the entry for the term "dividend" in your Vocabulary. Vocabulary Notebook Sample:	
New Word dividend	My Description a dividend is the total amount that you have to separate into groups
Personal Connection In the problem $16 \div 4=4,16$ is the dividend.	

Activity
 Multiplication and Division Time!
 This activity was worked on yesterday. Ask students what they learned about playing the game that is helpful. Have students share strategies. Ask students to work in a different pairing today.

Multiplication and Division Time!

This activity will give students an opportunity to practice multiplication facts.

Multiplication and Division Time!

Directions:

1. Divide the students into pairs.
2. Give each pair a deck of cards-remove the face cards (you can use the joker as a 0), a white board and pen/crayon for each student.
3. Shuffle the cards and deal them to each player until all of the cards are distributed.
4. Each player turns a card over.
5. Each player writes the Fact Family on his/her white board.

Example: Cards turned over are a 3 and a 5 . Each player would write the following four problems on his/her board
$3 \times 5=15$ and $5 \times 3=15$
$15 \div 3=5$ and $15 \div 5=3$
6. Player who turns white board over with the correct 4 problems first, takes the two cards.
7. Students erase white board and play again.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation). Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them. (Aha!)

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Multiplication and Division Time 2
Focus:	Multiplication and Division

Materials:

White boards Vocabulary Notebooks
Crayolas
Dice
Socks
Cards(remove face cards, use the joker as a zero)

Opening

State the objective

Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction, multiplication, and division.

Gain prior knowledge by asking students the following questions

Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe those things. What are some strategies that you use when you are trying to figure out how to solve a mathematics problem?
How can you tell that you are on the right track for solving the problem?
What are the basic operations that you need to utilize during math?

Content (the "Meat")	
Problem of the Day The bakery sold 4,361 cupcakes and 4,631 chocolate chip cookies. Did the bakery sell more cupcakes or cookies? How do you know?	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly.
Fact Practice Spokes on a Wheel 1. Divide students into pairs. 2. On a white board, student draws a small circle with 9 spokes coming out of it (should look like a bicycle tire). 3. Have students choose to put a 6,7 or 8 in the center circle. 4. Student rolls two dice and adds the pips (dots). 5. Taking this total, student writes a math problem on one of the spokes (eg. 7 is in the circle and students rolls a 3 and 5 which totals 8 . The spoke equation would look like $7+8=15$. 6. Process continues until all spokes have an equation.	Check in about what is happening and what they are thinking. Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

Math Vocabulary
Word for today: divisor
Description: Divisor is a term we use to define the number you divide by. In a division problem it is the dividend \div divisor = quotient. In a real example it is $18 \div 6=3$
The 6 is the divisor. Write several problems on the board and have students circle the divisor. Students complete the Vocabulary Notebook for the term "divisor". Vocabulary Notebook Sample:
New Word My Description divisor number you divide into another number Personal Connection Drawing In the problem 20 divided by 5 the divisor is 5.

Activity

Multiplication and Division Time!

This activity will give students an opportunity to practice multiplication facts.

Multiplication and Division Time!

Directions:

1. Divide the students into pairs.
2. Give each pair a deck of cards-remove the face cards (you can use the joker as a 0), a white board and pen/crayon for each student.
3. Shuffle the cards and deal them to each player until all of the cards are distributed.
4. Each player turns a card over.
5. Each player writes the Fact Family on his/her white board.

Example: Cards turned over are a 3 and a 5. Each player would write the following four problems on his/her board
$3 \times 5=15$ and $5 \times 3=15$
$15 \div 3=5$ and $15 \div 5=3$
6. Player who turns white board over with the correct 4 problems first, takes the two cards.
Students erase white board and play again.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them. (Aha!)

Component	Math
Grade Level:	$3^{\text {rd }}$ Grade
Lesson Title:	Magic Squares
Focus:	Problem Solving

Materials:

White boards
Crayolas
Socks

Decks of cards
Vocabulary Notebooks
\qquad

Opening

State the objective

Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction, multiplication, and division.

Gain prior knowledge by asking students the following questions

Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe those things. What are some strategies that you use when you are trying to figure out how to solve a mathematics problem?
How can you tell that you are on the right track for solving the problem?
What are the basic operations that you need to utilize during math?

Content (the "Meat")	
Problem of the Day Can you figure out the number from the clues? I am a four digit number. My first and last digits are the same. The digit in my tens place is 8 . The sum of my ones digit and tens digit is 12. The sum of all four digits is 21 . What is the number? How do you know?	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly.
Fact Practice Foreheader 1. Divide students into trios. Give each trio a deck of cards without face cards and jokers. 2. Shuffle the deck and give all of the cards to the referee who will be "judging" the contest. 3. On go, players are each handed a card by the referee and WITHOUT looking, put the card face out on his/her forehead. 4. The referee adds the two numbers together and states the answer. 5. Each player looks at the other person's exposed number and names his/her own number. 6. Person who wins (accuracy and time), collects both cards. 7. Play continues until all cards are gone. 8. Players can repeat play (if there is another time) with each other so each has an opportunity to be both a player and referee.	Check in about what is happening and what they are thinking. Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the

student become the teacher.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.
Vocabulary Notebook Sample:

New Wordinequality	My Description things that are not equal, like 9 and 3 aren't equal
Personal Connection There is an inequality between the two amounts.	Drawing

Magic Squares

This activity was worked on yesterday. Ask students what they learned about playing the game that is helpful. Have students share strategies. Ask students to work in a different pairing today.

Magic Card Squares

A Magic Square is an arrangement of single digits in such a way that the sums of each horizontal, vertical and diagonal lines equal the same number. Magic squares can add up to $12,15,18,21$, or 24.
If the Magic Square is to $=12$, you will need the following cards: joker $(=0)$, Ace $(=1), 2,3$, 4, 5, 6, 7, and 8
If the Magic Square is to $=15$, you will need Ace $(=1), 2,3,4,5,6,7,8$, and 9
If the Magic Square is to $=18$ you will need a $2,3,4,5,6,7,8,9$, and 10
If the Magic Square is to $=21$, you will need a $3,4,5,6,7,8,9,10$, and Jack ($=11$)
If the Magic Square is to $=24$,you will need a $4,5,6,7,8,9,10$, Jack ($=11$), and a Queen (=12)

Magic Squares
 Directions:

1. Divide students into pairs.
2. Give each pair a deck of cards, a white board and pen/crayon.
3. Pair makes a 3×3 Magic Square on his/her white board.

4. Pair then selects whether they will create a Magic Square equal to $12,15,18,21$, and 24. Pair then selects the playing cards needed.
5. Pair then works together to create the Magic Square.

Closing
 Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?

Debrief

Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity?

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them. (Aha!)

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Magic Squares 2
Focus:	Problem Solving

Materials:

White boards
Crayolas
Socks

Decks of cards
Vocabulary Notebooks

Opening

State the objective

Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction, multiplication, and division.

Gain prior knowledge by asking students the following questions

Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe those things. What are some strategies that you use when you are trying to figure out how to solve a mathematics problem?
How can you tell that you are on the right track for solving the problem?
What are the basic operations that you need to utilize during math?

Content (the "Meat")

Problem of the Day

Write 5 different 3 digit numbers using the 5 numbers below. Write them in order from smallest to largest.

3, 6, 8, 2, 4
 Fact Practice

Addition War

- Divide students into pairs. Give each pair a deck of cards without face cards and jokers.
- Shuffle the deck and divide the cards evenly between the two players.
- On go, the players turn over the cards at the same time.
- Students add the 2 numbers that have been turned up.
- First person to give the answer either wins the cards because the answer is correct, or has to turn over 2 cards because he/she gave the wrong answer.
- At the end of round, students may reshuffle the pile of cards that they have.
- Play can continue until one player has all cards or time has called.

> *Activity \rightarrow Teachable Moment(s) throughout

During the lesson check in with students repeatedly.
Check in about what is happening and what they are thinking.
Take advantage of any teachable moments.
Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking.
When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Magic Card Squares

A Magic Square is an arrangement of single digits in such a way that the sums of each horizontal, vertical and diagonal lines equal the same number. Magic squares can add up to $12,15,18,21$, or 24 .
If the Magic Square is to $=12$, you will need the following cards: joker (= 0), Ace (= 1), 2, 3, 4, 5, 6, 7, and 8
If the Magic Square is to $=15$, you will need Ace $(=1), 2,3,4,5,6,7,8$, and 9
If the Magic Square is to $=18$ you will need a $2,3,4,5,6,7,8,9$, and 10
If the Magic Square is to $=21$, you will need a $3,4,5,6,7,8,9,10$, and Jack ($=11$)
If the Magic Square is to $=24$,you will need a $4,5,6,7,8,9,10$, Jack ($=11$), and a Queen (=12)

Magic Squares

Directions:.

1. Divide students into pairs
2. Give each pair a deck of cards, a white board and pen/crayon.
3. Pair makes a 3×3 Magic Square on his/her white board.

4. Pair then selects whether they will create a Magic Square equal to $12,15,18,21$, and 24. Pair then selects the playing cards needed.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
5. Pair then works together to create the Magic Square.

Following are the guidelines for creating a Magic Square. These are for you NOT the students. After students have creating several Magic Square, have them begin to look for and discover the rules.
Rules for Creating a Magic Square:
Divide the sum of the Magic Square by 3 to find the center number $(15 \div 3=5) 5$ is placed in the center.
Add 1 to the center square and the write the sum in the top right corner. Subtract 1 from the center and write the difference in the bottom left corner.
Add 2 to the center square and write the sum to the right of the center square. Subtract 2 from the center square and write the difference to the left of the center square.
Add 3 to the center square and write the sum in the top left corner. Subtract 3 from the center square and write the difference in the bottom right corner.
Add 4 to the center square and write the sum directly under the center. Subtract 4 from the center number and write the difference directly above the center.

8	1	6
3	5	7
4	9	2

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them. (Aha!)

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Which Way?
Focus:	Multiplication

Materials:	
White boards	Vocabulary Notebooks
Crayolas	Deck of Cards for each pair
Socks	Target (end of this lesson plan)

Opening

State the objective

Today we are going to practice using our math vocabulary and practice in the basic operations of multiplication.

Gain prior knowledge by asking students the following questions

Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe those things. What are some strategies that you use when you are trying to figure out how to solve a mathematics problem?
What do you know about multiplication? When would you use multiplication?
How can you tell that you are on the right track for solving a multiplication problem?
How would you check an answer to a multiplication problem to be sure you are correct

Content (the "Meat")	
Problem of the Day If the problem is $768+427$, and your task was to estimate an answer, how would you do that? Please explain.	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly.
Fact Practice Target 1. Divide students into trios. 2. Each trio needs a deck of cards without face cards and jokers. 3. Place the cards face up in a TicTac Toe Grid. 4. Turn up a $10^{\text {th }}$ card which will be to the side and becomes the target number (aces count as 1). 5. Each player makes an equation with some or all of the numbers in the grid to equal the target number. Students may add or subtract. 6. Each card may be used only one time in the equation. 7. As the cards are being picked up, the player must say the equation aloud-for example if the target card is 10 , then I could say $6+4=10$, and pick up the 6 and the	Check in about what is happening and what they are thinking. Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the

4. 8. After one player finishes his/her turn, then the cards taken are replaced by cards from the remaining deck. 9. Player with the most cards at the end of the game win.	student become the teacher.
Math Vocabulary Word for today: factors Description: The term factor refers to the two numbers that you multiply together to come up with a product in a multiplication problem. For example in the problem $3 \times 4=12$, the factors are 4 and 4 , the product is 12 . There are other factors of 12 . For example: $1 \times 12=12$ (so 1 and 12 are factors) $2 \times 6=12$ (so 2 and 6 are factors) If we were to look at all of the POSSIBLE factors of 12 we would need to list: $1,2,3,4,6$, and 12. Students should complete the Vocabulary Notebook for the two connected terms: factor and product Vocabulary Notebook Sample:	It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word. When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation) Vocabulary Notebooks can be made from $1 / 2$ of a composition book.
Activity Which Way? Place value is an important concept for students in the third grade to understand. We only have ten numerals: $0,1,2,3,4,5,6,7,8$, and 9 . It is the arrangement of these numerals that determines the value of the number. In this activity, students will work to create the largest possible product by rearranging the numerals. Which Way? Directions: 1. Divide students into pairs. 2. Give each pair a deck of cards, a white board, and pen/crayons. 3. Students prepare the deck by removing tens, face cards, and jokers. 4. Pair shuffles the cards and deals three cards to each player and stacks the remaining cards face-down in a pile. 5. Each player uses the three cards to create one 2 digit number and one single digit number. 6. Player then multiplies the numbers together. 7. Player with the greatest product gets one point. 8. When cards are used they are placed in a discard pile.	Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

9. First player who gets 8 points, wins.

Closing
 Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?

Debrief

Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity?

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Which Way?
Focus:	Multiplication

Materials:

White boards
Crayolas
Socks

Vocabulary Notebooks
12-sided dice for each pair
Number Hunt Work Sheet

Materials from yesterday

Opening

State the objective

Today we are going to practice using our math vocabulary and practice in the basic operation of multiplication.

Gain prior knowledge by asking students the following questions

Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe those things. What are some strategies that you use when you are trying to figure out which operation to use to solve a mathematics problem?
How can you tell that you are on the right track for solving a multiplication problem?
What do you know about multiplication and when would you use this operation?

Content (the "Meat")	
Problem of the Day Write at east 5 different 3 digit numbers using the 5 numbers below. Write them in order from the smallest to the largest. $7,9,1,4,3$	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly. Check in about what is happening and what they are thinking.
Fact Practice Number Hunt 1. Divide students into pairs. 2. Each pair needs a Number Hunt sheet (attached to this lesson plans). 3. Player rolls two, 12 -sided dice. 4. Player adds or subtracts the two numbers. 5. If the number is not yet covered, then player may cover the number. 6. Next player repeats steps 1-3. 7. Winner is determined by who has the most numbers covered.	Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

Math Vocabulary	
Word for Today: product	
Description: The term product refers to the answer in a multiplication problem. The factors are the two numbers that you would multiply together and the product is the answer. For example in the problem $6 \times 7=42$, the factors are 6 and 7 , the product is 42 . Identify the factors and the products in each of the problems below:	
$3 \times 9=27$	
$9 \times 8=72$	
$9 \times 5=45$	
$7 \times 2=14$	
Create an entry in your Vocabulary Notebook for the word product. Vocabulary Notebook Sample:	
New Word	My Description
product	Answer in a multiplication problem
Personal Connection	Drawing
I know the product of 6×7. It is 42 .	Multiplication:

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word. When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Which Way?

This activity was worked on yesterday. Ask students what they learned about playing the game that is helpful. Have students share strategies. Ask students to work in a different pairing today.

Which Way?

Place value is an important concept for students in the third grade to understand. We only have ten numerals: $0,1,2,3,4,5,6,7,8$, and 9 . It is the arrangement of these numerals that determines the value of the number. In this activity, students will work to create the largest possible product by rearranging the numerals.

Which Way?

Directions:

1. Divide students into pairs.
2. Give each pair a deck of cards, a white board, and pen/crayons.
3. Students prepare the deck by removing tens, face cards, and jokers.
4. Pair shuffles the cards and deals three cards to each player and stacks the remaining cards face down in a pile.
5. Each player uses the three cards to create one 2 digit number and one single digit number.
6. Player then multiplies the numbers together.
7. Player with the greatest product gets one point.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
8. When cards are used they are placed in a discard pile.
9. First player who gets 8 points, wins.

Closing

Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?

Debrief

Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity?

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Number Hunt

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Number Hunt

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Divide
Focus:	Division

Materials:

White boards
Crayolas
Socks

Vocabulary Notebooks
Double 9 Dominoes -

Math term: remainder
Description: The term "remainder" refers to the amount left over when you divide things equally and there are not enough things left to distribute evenly. For example is you have 25 cookies and 5 people, you could give each person 5 cookies and you would have one left over or one remaining. The 1 would be labeled the "remainder". A remainder can't be equal to or larger than the divisor. If that were the case, everyone would have an equal opportunity to have one more.

Have student review his/her Vocabulary Notebook for the term "remainder" with a peer. Any corrections that need to be made should be made.

Vocabulary Notebook Sample:

New Word	My Description remainder Amount left over when you have divided a total equally and don't have enough to give everyone 1 more
Personal Connection After we divided the cookies, we had a remainder of 2.	Drawing Remainder

Divide!
This activity was worked on yesterday. Ask students what they learned about playing the game that is helpful. Have students share strategies. Ask students to work in a different pairing today.

Dividing is the inverse of multiplication. Students need to practice division and understand that numbers can be evenly divided, perhaps by more than one number. For example, although $9 \times 8=72$, the product 72 can be divided evenly by $2,3,4$, and 6 (other possibilities as well). This activity will give students an opportunity to practice division.

Divide!

Directions:

1. Divide students into pairs.
2. Give each pair a deck of cards, a white board, and pen/crayons.
3. Pair prepares the deck by removing jokers and face cards.
4. Shuffle the cards and deal 3 cards to each player and places the remaining cards in a facedown pile.
5. Player turns two cards over and multiplies them together. Example: cards turned over are a 5 and a 8 . Multiplied together the product is 4.
6. Players then looked at their cards and determine if they have a card that will divide the product evenly.
7. Player gets one point for each division problem he/she can do.
academic math vocabulary often throughout the day.
Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Consult 4 Kids Lesson Plans

8. Example: Player has a 2, 3, and 10. The player can divide 40 by both 2 and 10 evenly. He/she will then get 2 points.
9. Once play has finished, all cards are discarded and play begins again (deal 3 cards, turn 2 over and multiply).
10. Game is over when all cards have been played.

Closing

Review
Say:

- Please recap what we did today.
- Did we achieve our objectives?

Debrief

Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity?

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Consult 4 Kids Lesson Plans

Double 9 Dominoes

Consult 4 Kids Lesson Plans

	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
\bullet						
\bullet	\bullet	\bullet				
\bullet						
\bullet	\bullet	\bullet				

| 000 | 000 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 000 | 000 | | 0 | 00 |
| 000 | 000 | | | |
| 000 | 000 | 000 | 009 | 000 |
| 000 | 000 | 000 | 000 | 000 |
| 000 | 000 | 000 | 000 | 000 |

	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	00	0	0	
0	0	0	0	000	00	000			
0	0	0	0	000	000	000			

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Quotient and Divide
Focus:	Division

Materials:

White boards
Crayolas
Socks

Vocabulary Notebooks
deck of cards, no face cards or jokers for math fact practice

Opening
\quad State the objective
Today we are going to practice using our math vocabulary and practice in the basic operations of division.
Gain prior knowledge by asking students the following questions
Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe
those things. What are some strategies that you use when you are trying to figure out how to solve a mathematics
problem?
How can you tell that you are on the right track for solving a division problem?
What are the basic operations that you need to utilize during division?

Content (the "Meat")

Problem of the Day

Look at the table below. Were more cookies sold on Tuesday and Wednesday or on Wednesday and Thursday? How do you know?

Day	\$ of Cookies
Monday	27
Tuesday	73
Wednesday	56
Thursday	71
Friday	72

Fact Practice

Draw!

1. Divide students into pairs and give each pair a deck of cards.
2. Remove the face cards and jokers from the deck of cards.
3. Shuffle the deck.
4. Decide who will go first.
5. First player draws two cards.
6. Student adds or subtracts the cards.

*Activity \rightarrow Teachable Moment(s) throughout

During the lesson check in with students repeatedly.
Check in about what is happening and what they are thinking.
Take advantage of any teachable moments.
Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking.
When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.
7. Student writes his/her problem on the white board, writing a complete number sentence.
8. Students take turns drawing cards and creating problems.

Math Vocabulary

Word for Today: quotient

Description: The term "quotient" refers to the answer you get when you divide. For example, a dividend \div divisor $=$ quotient. $12 \div 3=4$. In this case the quotient is 4 . (The 12 is the dividend and the 3 is the divisor).
Have students look at the problems below and identify the quotient in each:

$$
\begin{aligned}
& 9 \div 3=3 \\
& 16 \div 4=4 \\
& 49 \div 7=7 \\
& 32 \div 8=4
\end{aligned}
$$

Have student complete his/her Vocabulary Notebook for the term "quotient".

Vocabulary Notebook Sample:

New Word quotient	My Description The answer in a division problem
Personal Connection The problem $28 \div 7=4$	Drawing 12 divided by 3

Activity
 Divide!

Dividing is the inverse of multiplication. Students need to practice division and understand that numbers can be evenly divided, perhaps by more than one number. For example, although $9 \times 8=72$, the product 72 can be divided evenly by $2,3,4$, and 6 (other possibilities as well). This activity will give students an opportunity to practice division.

Divide!

Directions:

1. Divide students into pairs.
2. Give each pair a deck of cards, a white board, and a pen/crayons.
3. Pair prepares the deck by removing jokers and face cards.
4. Shuffle the cards and deal 3 cards to each player and places the remaining cards in a facedown pile.
5. Player turns two cards over and multiplies them together. Example: cards turned over are a 5 and a 8 . Multiplied together the product is 4 .
6. Players then looked at their cards and determine if they have a card that will divide the product evenly.
7. Player gets one point for each division problem he/she can do.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
8. Example: Player has a 2,3 , and 10. The player can divide 40 by both 2 and 10 evenly. He/she will then get 2 points.
9. Once play has finished, all cards are discarded and play begins again (deal 3 cards, turn 2 over and multiply).
10. Game is over when all cards have been played.

	Closing
	Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?

Debrief

Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity?

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Checkers
Focus:	Division

Materials:	
White boards	Vocabulary Notebooks
Crayolas	Deck of cards
Socks	Checker board at end of lesson plan, tokens for checkers

Opening
\quad State the objective
Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction,
multiplication, and division.
Gain prior knowledge by asking students the following questions
Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe
those things. What are some strategies that you use when you are trying to figure out how to solve a mathematics
problem?
How can you tell that you are on the right track for solving the problem?
What are the basic operations that you need to utilize during math?

Content (the "Meat")
 Problem of the Day

What is the sum of this addition problem: $387+694$? Tell how you did this problem and how you know you have the correct answer.

Fact Practice
 Bump It Up! Add A Zero

1. Divide students into pairs.
2. Give each pair a white board and a deck of cards (without face cards, jokers, or 10 s).
3. The object of this fact practice is to sum numbers until you reach 1,000 .
4. Student draws 2 cards, adds the value of the cards together, multiplies by ten and writes the total on the sheet.
5. It is not the other person's turn to do the same.
6. When play returns to the first player, the process is repeated, although this time, the totals are added together.
7. First person to 1,000 wins.
8. Example: Player draws a 7 and a 4. Total is 11 . Multiply by 10 (add the zero) equals 110. Next turn, player draws a 3 and a 2 which totals 5 . Multiply by 10 and I now add 50 to 110 for a total of 160 .

*Activity \rightarrow Teachable Moment(s) throughout

During the lesson check in with students repeatedly.
Check in about what is happening and what they are thinking.
Take advantage of any teachable moments.
Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking.
When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

Math Vocabulary		
Word for Today: estimation		
Description: The term "estimation" refers to making a reasonable guess as to how many of something there are. In other words, it is a close guess of the actual value, usually with some thought or callulation involved. .f you wanted to estimate how many beans there were in 10 handfuls of jelly beans, you could take one handul, count the jelly beans that were in that handful, and then multiply by 10 so you can estimate how many jelly beans there would be in 10 handfuls. Create the entry for the word "estimation" in the Vocabulary Notebook with a peer. Vocabulary Notebook Sample:		
New Word My Description estimation making an educated guess about how much In his estimation there are 100 jelly beans in the jar. Drawing Personal Connection		

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them. (Aha!)

Consult 4 Kids Lesson Plans

This side of the checker board is for Player A. This half of the checker board will be joined to the half of the checker board for Player B. They join on the opposite side. The top row of this side that begins with $84 \div 7$ and ends with $48 \div$ 4, joins with Player B so that $48 \div 4$ joins $81 \div 9$. Player A will place the checkers on the shaded squares in the 3 rows closest to this direction.

$84 \div 7=$	$54 \div 6=$	$36 \div 6=$	$48 \div 4=$
$6 \div 3=$	$121 \div 11=$	$54 \div 9=$	$35 \div 7=$
$24 \div 12=$	$25 \div 5=$	$100 \div 10=$	$72 \div 6=$
$21 \div 3=$	$56 \div 8=$	$36 \div 9=$	$28 \div 4=$
$24 \div 7=$	$72 \div 8=$	$18 \div 3=$	$49 \div 7=$
$15 \div 5=$	$60 \div 12=$	$108 \div 9=$	$10 \div 2=$
$20 \div 4=$	$9 \div 3=$	$63 \div 9=$	$110 \div 11=$

$81 \div 9=$	$48 \div 8=$	$45 \div 5=$	$48 \div 6=$
$63 \div 7=$	$108 \div 12=$	$144 \div 12=$	$72 \div 9=$
$12 \div 4=$	$40 \div 5=$	$70 \div 10=$	$16 \div 2=$
$132 \div 11=$	$8 \div 4=$	$72 \div 12=$	$120 \div 12=$
$32 \div 8=$	$64 \div 8=$	$18 \div 6=$	$96 \div 8=$
$30 \div 5=$	$77 \div 7=$	$56 \div 7=$	$24 \div 3=$
$20 \div 5=$	$36 \div 3=$	$28 \div 7=$	

This side of the checker board is for Player B. This half of the checker board will be joined to the half of the checker board for Player A. They join on the opposite side. The top row of this side that begins with $81 \div 9$ and ends with $48 \div 6$, joins with Player A so that $81 \div 9$ joins $48 \div 4$.
Player B will place the checkers on the unshaded squares in the 3 rows closed to these directions.

Component	Math
Grade Level:	$3^{\text {rd }}$ Grade
Lesson Title:	Checkers
Focus:	Division

Materials:

White boards
Crayolas
Vocabulary Notebooks
Socks
dice (6-sided and 12-sided for each pair)
Checker Board at the end of the game, tokens to use as checkers

Opening

State the objective

Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction, multiplication, and division.

Gain prior knowledge by asking students the following questions

Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe those things. What are some strategies that you use when you are trying to figure out how to solve a mathematics problem?
How can you tell that you are on the right track for solving the problem?
What are the basic operations that you need to utilize during math?

Content (the "Meat")	
Problem of the Day Copy the shape below. Draw lines of symmetry on each one. Remember that some shapes may have more than one line of symmetry.	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly. Check in about what is happening and what they are thinking.
Fact Practice Fact Family A Fact Family is 3 numbers which have a relationship in addition and subtraction. For example, the number 9,4 , and 13 have a particular relationship in math. This family has four members: $\begin{aligned} & 9+4=13 \\ & 4+9=13 \\ & 13-9=4 \\ & 13-4=9 \end{aligned}$ Students should roll 2 dice and create a Fact Family by writing the members of the family on the white board. Student should roll a total of 5 times, creating 5 Fact Families.	Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

Math Vocabulary

Word for Today: rounding

Description: The term "rounding" refers to process used in estimation when you ask yourself which number another number is "closest" to. For example, if you were just thinking about the number " 9 ", is that number closest to 0 or 10 . The answer, of course would be that it is closest to 10 . However, if I asked you if the number " 9 " is closest to 0 or 100 , the answer would be that it is closer to 0 . So when you are rounding a number, you have to know what you are comparing the number to. The general rule is that you think about what you are comparing a number to, you look at the number one place to the right, and if the number in that spot is $5,6,7,8$, or 9 you round up, and if the number is $1,2,3$, or 4, you round down.
If the question is this: Is 278 closer to 200 or 300 , you would take a look at the number to the right of hundreds (in this case 7), and you would know to round up to 300, and that 278 is closer to 300 that it is to 200 .

Have student create and entry in his/her Vocabulary Notebook for the term "rounding". Any corrections that need to be made should be made.

Vocabulary Notebook Sample:

New Word \quad rounding	My Description 5 or higher round up, 4 or lower, leave alone
Personal Connection Do you know how to round the number 386 to the hundred's place? $\mathbf{3 8 6}$ rounded is 400	

Activity

Checkers

Practice of multiplication and division facts is important until students have them memorized to automaticity. This activity takes the game Checkers and gives students an opportunity to practice math facts while playing Checkers. In order to move to a space, student must provide the product or quotient for the math fact in that square.

Checkers

Directions:

1. Divide students into pairs.
2. Give each pair a Checkers Board (attached to this lesson plan), red and black checkers (can be scraps of paper), a white board and pen/crayons.
3. Pair tapes two pieces of the Checkers Board together and puts his/her markers on the board.
4. Player 1 moves his/her checker into a space, saying the product or quotient in order to take that space.
5. Player 2 then takes his/her turn.
6. Play continues just like Checkers.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word. When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them. (Aha!)

Consult 4 Kids Lesson Plans

This side of the checker board is for Player A. This half of the checker board will be joined to the half of the checker board for Player B. They join on the opposite side. The top row of this side that begins with $84 \div 7$ and ends with $48 \div$ 4, joins with Player B so that $48 \div 4$ joins $81 \div 9$. Player A will place the checkers on the shaded squares in the 3 rows closest to this direction.

$84 \div 7=$	$54 \div 6=$	$36 \div 6=$	$48 \div 4=$
$6 \div 3=$	$121 \div 11=$	$54 \div 9=$	$35 \div 7=$
$24 \div 12=$	$25 \div 5=$	$100 \div 10=$	$72 \div 6=$
$21 \div 3=$	$56 \div 8=$	$36 \div 9=$	$28 \div 4=$
$14 \div 7=$	$72 \div 8=$	$18 \div 3=$	$49 \div 7=$
$24 \div 6=$	$88 \div 11=$	$132 \div 12=$	$18 \div 9=$
$20 \div 4=$	$9 \div 3=$	$63 \div 9=$	$110 \div 11=$

Consult 4 Kids Lesson Plans

$81 \div 9=$	$48 \div 8=$	$45 \div 5=$	$48 \div 6=$
$63 \div 7=$	$108 \div 12=$	$144 \div 12=$	$72 \div 9=$
$12 \div 4=$	$40 \div 5=$	$70 \div 10=$	$16 \div 2=$
$132 \div 11=$	$8 \div 4=$	$72 \div 12=$	$120 \div 12=$
$30 \div 5=$	$77 \div 7=$	$56 \div 7=$	$24 \div 3=$
$32 \div 4=$	$12 \div 6=$	$16 \div 4=$	$27 \div 3=$
$20 \div 5=$	$36 \div 3=$	$28 \div 7=$	$42 \div 6=$
$32 \div 8=$	$64 \div 8=$	$18 \div 6=$	$96 \div 8=$

This side of the checker board is for Player B. This half of the checker board will be joined to the half of the checker board for Player A. They join on the opposite side. The top row of this side that begins with $81 \div 9$ and ends with $48 \div 6$, joins with Player A so that $81 \div 9$ joins $48 \div 4$.
Player B will place the checkers on the unshaded squares in the 3 rows closed to these directions.

Component	Math
Grade Level:	$3^{\text {rd }}$ Grade
Lesson Title:	Student Activity Choice
Focus:	Review

Materials:

Game Boards and materials from this week.
Prizes (these can be time, a leadership role, opportunities to be the "teacher")

| Opening |
| :--- | :--- |
| State the objective |
| Today we are going to have fun playing a game. Students will be able to choose from the games learned in the past two |
| weeks. |

Content (the "Meat")
 Activity

Choice of 5 activities
Over the past 11 days students have played 5 different games. Give students an opportunity to play one of these games.

- Magic Squares
- Multiplication and Division Time
- Which Way?
- Divide!
- Checkers

	Closing
Say:	Review
- Please recap what we did today.	
- Did we achieve our objectives?	

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them. (Aha!)
