| Component | Math |
| :--- | :--- |
| Grade Level: | 3rd Grade |
| Lesson Title: | Attributes of Shapes |
| Focus: | Geometry |

## Materials:

White boards
Crayolas
Socks

Decks of cards Vocabulary Notebooks
Activity at the end of this lesson plan

Dominoes (Double 9)

Opening
State the objective
Today we are going to practice using our math vocabulary and practice in the basic operation of multiplication.

## Gain prior knowledge by asking students the following questions

What do you know about geometry? Name several geometric shapes. What is the difference between plane geometry and solid geometry? How many geometric shapes can you name that have 4 sides? What is the shape of a right angle?

| Content (the "Meat") |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem of the Day |  |  |  |  |  | *Activity $\rightarrow$ Teachable <br> Moment(s) throughout <br> During the lesson check in with students repeatedly. <br> Check in about what is happening and what they are thinking. <br> Take advantage of any teachable moments. <br> Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. <br> When possible, engage students in a "teach to learn" opportunity and have the student become the teacher. |
| In | 4 | 5 | 6 | 7 | 8 |  |
| Out | 12 | 15 | 18 | 21 | 24 |  |
| Fact Practice <br> Addition War <br> - Divide students into pairs. Give each pair a deck of cards without face cards and jokers. <br> - Shuffle the deck and divide the cards evenly between the two players <br> - On go, the players turn over the cards at the same time <br> - Students add the 2 numbers that have been turned up <br> - First person to give the answer either wins the cards because the answer is correct, or has to turn over 2 cards because he/she gave the wrong answer <br> - At the end of round, students may reshuffle the pile of cards that they have <br> - Play can continue until one player has all cards or time has called |  |  |  |  |  |  |
|  |  |  |  |  | Voc | It is important to review academic math vocabulary often throughout the day. |

Description: Geometry is a type of mathematics that has to do with lines, space, and shapes, both plane (two-dimensional) and solid (three dimensional). Plane geometry is about lines, squares, and triangles to name a few. Solid geometry is about cubes, cylinders, and prisms.
Enter the term Geometry in your Vocabulary Notebook. Share with a friend what the term means. Give an example.
Vocabulary Notebook Sample:

| New Word <br> geometry | My Description <br> lines, shapes and space |
| :--- | :--- |
| Personal Connection <br> I like geometric designs on books. | Drawing |

## Activity <br> Geometry

## Geometry

Attributes are a property of an object or a person, it is a descriptor, something you can say it has such as size, shape or color. When we talk about attributes of geometric shapes we can also talk about angles, sides, right angles, as well as size and color attributes.

Talk with students about the different types of angles. Explain that a right angle is in the shape of a capital L. Ask them to identify objects in the room that have right angles. Explain that angles can also be smaller or closer together than a right angle or larger or further apart than a right angle. Ask them to look at the hands of an analog clock. When it is 1:00 the hands form an angle smaller than a right angle. When it is $5: 00$, the angle is larger than a right angle. What hour times on the clock would be a right angle? Ask children to share what shape doesn't have angles or sides at all (circle).

Today students are going to look at several shapes and identify the attributes of the shapes in term of sides, angles, and right angles.

## Attributes of Shapes

## Directions:

1. Divide students into pairs.
2. Give each pair a set of shape cards and an Attribute Board.
3. Shuffle the cards and place them face down in between the students.
4. Working together, pair draws a card, identifies the shape and then examines based on the attributes listed.
5. When students finish they need to locate 10 objects in the classroom and the attributes of those items, using the chart.
6. When finished, pair should share the information with another pair.

Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.


## Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Consult 4 Kids Lesson Plans
3rd Grade Attributes of Shapes

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |

3rd Grade Attributes Work Sheet

| Shape | Picture | Sides | Angles | Right Angles |
| ---: | :--- | :--- | :--- | :--- |
| triangle |  |  |  |  |
| rectangle |  |  |  |  |
| square |  |  |  |  |
| circle |  |  |  |  |
| pentagon |  |  |  |  |
| hexagon |  |  |  |  |
| right triangle |  |  |  |  |
| diamond |  |  |  |  |


| trapezoid |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| star |  |  |  |  |
| plus sign |  |  |  |  |


| Component | Math |
| :--- | :--- |
| Grade Level: | 3rd Grade |
| Lesson Title: | Attributes of Shapes |
| Focus: | Geometry |

## Materials:

White boards
Crayolas
Socks (for erasers)

Decks of cards Vocabulary Notebooks Activity at the end of this lesson plan

Dominoes (Double 9)

|  | Opening |
| :---: | :---: |
| State the objective |  |

Today we are going to practice using our math vocabulary and practice in the basic operation of multiplication.

## Gain prior knowledge by asking students the following questions

What do you know about geometry? Name several geometric shapes. What is the difference between plane geometry and solid geometry? How many geometric shapes can you name that have 4 sides? What is the shape of a right angle? What other attributes to geometric shapes have?

| Content (the "Meat") |  |
| :---: | :---: |
| Problem of the Day <br> I am a two digit number between 40 and 50 . I have multiples of $2,3,6$ and 7 . What number am I? How do you know? | *Activity $\rightarrow$ Teachable Moment(s) throughout <br> During the lesson check in |
| Fact Practice <br> Fore-header <br> 1. Divide students into trios. Give each trio a deck of cards without face cards and jokers. <br> 2. Shuffle the deck and give all of the cards to the referee who will be "judging" the contest <br> 3. On go, players are each handed a card by the referee and WITHOUT looking, put the card face out on his/her forehead <br> 4. The referee adds the two numbers together and states the answer <br> 5. Each player looks at the other person's exposed number and names his/her own number <br> 6. Person who wins (accuracy and time), collects both cards <br> 7. Play continues until all cards are gone. <br> 8. Players can repeat play (if there is another time) with each other so each has an opportunity to be both a player and referee | with students repeatedly. <br> Check in about what is happening and what they are thinking. <br> Take advantage of any teachable moments. <br> Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. <br> When possible, engage students in a "teach to learn" opportunity and have the student become the teacher. |


| Wath Vocabulary |
| :--- |
| Word for Today: geometry |
| Description: Geometry is a type of mathematics that has to do with lines, space, and |
| shapes, both plane (two-dimensional) and solid (three dimensional). Plane geometry is |
| about lines, squares, and triangles to name a few. Solid geometry is about cubes, |
| cylinders, and prisms. |
| Enter the term Geometry in your Vocabulary Notebook. Share with a friend what the term |
| means. Give an example. |
| Vocabulary Notebook Sample: |
| New Word My Description <br> geometry  <br> I like geometric designs on books. lines, shapes and space |

## Activity <br> Geometry

## Geometry

Attributes are a property of an object or a person, it is a descriptor, something you can say it has such as size, shape or color. When we talk about attributes of geometric shapes we can also talk about angles, sides, right angles, as well as size and color attributes.

Talk with students about the different types of angles. Explain that a right angle is in the shape of a capital L. Ask them to identify objects in the room that have right angles. Explain that angles can also be smaller or closer together than a right angle or larger or further apart than a right angle. Ask them to look at the hands of an analog clock. When it is $1: 00$ the hands form an angle smaller than a right angle. When it is $5: 00$, the angle is larger than a right angle. What hour times on the clock would be a right angle? Ask children to share what shape doesn't have angles or sides at all (circle).

Today students are going to look at several shapes and identify the attributes of the shapes in term of sides, angles, and right angles.

## Attributes of Shapes

## Directions:

1. Divide students into pairs.
2. Give each pair a set of shape cards and an Attribute Board.
3. Shuffle the cards and place them face down in between the students.
4. Working together, pair draws a card, identifies the shape and then examines based on the attributes listed.
5. When students finish they need to locate 10 objects in the classroom and the attributes of those items, using the chart.
6. When finished, pair should share the information with another pair.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.


## Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Consult 4 Kids Lesson Plans

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |

3rd Grade Attributes Work Sheet

| Shape | Picture | Sides | Angles | Right Angles |
| ---: | :--- | :--- | :--- | :--- |
| triangle |  |  |  |  |
| rectangle |  |  |  |  |
| square |  |  |  |  |
| circle |  |  |  |  |
| pentagon |  |  |  |  |
| hexagon |  |  |  |  |
| diamond |  |  |  |  |
| right triangle |  |  |  |  |


| trapezoid | star |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| plus sign |  |  |  |  |
| octagon |  |  |  |  |


| Component | Math |
| :--- | :--- |
| Grade Level: | $2^{\text {nd }}$ Grade |
| Lesson Title: | Roll a Rectangle |
| Focus: | Geometry |

## Materials:

White boards
Crayolas
Cards

Vocabulary Notebooks
Dice
Socks (erasers for white board)
Activity at the end of the lesson plan

| Opening |
| :--- |
| $\quad$ State the objective |
| Today we are going to practice using our math vocabulary and math skills fractions. |
| Gain prior knowledge by asking students the following questions |
| What do you know about finding the perimeter? What is the perimeter? What operation do you utilize when you are |
| finding the perimeter of an object? If you were to have a school yard that measured 15 yards by 10 yards, and it was a |
| perfect rectangle, what would the perimeter of the yard be? Make several rectangles on the white board or chart paper. |
| Label the sides. Ask students to find the perimeter. |


| Content (the "Meat") |  |
| :---: | :---: |
| Problem of the Day <br> Write a multiplication problem that has a product of 36 . Then write a story that matches the problem you have written. $? \times \text { ? }=36$ | *Activity $\rightarrow$ Teachable <br> Moment(s) throughout <br> During the lesson check in with students repeatedly. <br> Check in about what is happening and what they are |
| Fact Practice <br> Foreheader <br> 1. Divide students into trios. Give each trio a deck of cards without face cards and jokers. <br> 2. Shuffle the deck and give all of the cards to the referee who will be "judging" the contest <br> 3. On go, players are each handed a card by the referee and WITHOUT looking, put the card face out on his/her forehead <br> 4. The referee adds the two numbers together and states the answer <br> 5. Each player looks at the other person's exposed number and names his/her own number <br> 6. Person who wins (accuracy and time), collects both cards <br> 7. Play continues until all cards are gone. <br> 8. Players can repeat play (if there is another time) with each other so each has an opportunity to be both a player and referee | thinking. <br> Take advantage of any teachable moments. <br> Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. <br> When possible, engage students in a "teach to learn" opportunity and have the student become the teacher. |

Word for Today: perimeter
Description: The term perimeter refers to the distance around a two-dimensional shape.
You start at one spot and measure all the way around. If you want to measure the
perimeter of a circle you would call it the circumference not the perimeter.
Create an entry for the term "perimeter" in your Vocabulary Notebook. Share with a peer.
Vocabulary Notebook Sample:

| New Word | My Description |
| :--- | :--- |
| perimeter | What is the perimeter of your yard? |

## Activity <br> Perimeters

## Perimeters

The perimeter of a geometric shape is the distance around the shape. You start at one spot (corner) and then add all the measurements together. For example:


So, if you started at the black dot you would create this problem: $4+2+4+2=12$ feet. Draw several different shapes on the board, labeling the sides (don't draw a circle), and find the perimeters of each of the items. Have children help by coming up and demonstrating understanding at the board.

Show students how to roll the sides of a rectangle or a square. Take two 6 -sided dice and roll them. It the dice rolled are a 3 and a 4 , you will create a rectangle on grid paper that is 3 squares by 4 squares.


If you started at the corner and counted the squares you would create a problem that was 4 $+3+4+3=14$ squares. Students will want to roll the dimension of the rectangle, create a number sentence to show the addition of each of the sides, and then record the perimeter for each rectangle.

## Roll A Rectangle

## Directions:

1. Divide students into pairs.

It is important to review academic math vocabulary often throughout the day Complete the Vocabulary notebook for each word.

When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation) Vocabulary Notebooks can be made from $1 / 2$ of a composition book

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
2. Give each pair a sheet of graph paper (attached to this lesson plan), and two 6sided dice.
3. Working together, students roll the dice draw a rectangle that reflects the information on the dice.
4. Pair creates the perimeter equation and writes the perimeter in total number of squares.
5. Activity is over when the grid paper is full.


## Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | \| |  |  |  | $\qquad$ |  |  |  |  |  |  |  |  |  |  | $\square$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Component | Math |
| :--- | :--- |
| Grade Level: | 3rd Grade |
| Lesson Title: | Roll a Rectangle 2 |
| Focus: | Geometry |

## Materials:

White boards
Crayolas
Socks (for erasers)

Vocabulary Notebooks
dice

Opening
State the objective
Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction, multiplication, and division.

## Gain prior knowledge by asking students the following questions

What do you know about finding the perimeter? What is the perimeter? What operation do you utilize when you are finding the perimeter of an object? If you were to have a school yard that measured 15 yards by 10 yards, and it was a perfect rectangle, what would the perimeter of the yard be? Make several rectangles on the white board or chart paper. Label the sides. Ask students to find the perimeter.

| Content (the "Meat") |  |
| :---: | :---: |
| Problem of the Day <br> Skating Rink tickets are $\$ 5.00$ for a three hour session. If 91 people buy tickets for the session, how much money does the skating rink earn? How do you know you are right? | *Activity $\rightarrow$ Teachable Moment(s) throughout During the lesson check in |
| Fact Practice <br> Addition Ladder <br> 1. Give each student a white board (include marker or crayola) <br> 2. Student should draw a ladder like the one below <br> 3. Have student roll 2 dice, total the pips and then add that number to each of the numbers in the ladder, writing the sum to the right of the number | with students repeatedly. <br> Check in about what is happening and what they are thinking. <br> Take advantage of any teachable moments. <br> Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. <br> When possible, engage students in a "teach to learn" opportunity and have the student become the teacher. |

## Math Vocabulary

## Word for Today: perimeter

Description: The term perimeter refers to the distance around a two-dimensional shape. You start at one spot and measure all the way around. If you want to measure the perimeter of a circle you would call it the circumference not the perimeter.
Create an entry for the term "perimeter" in your Vocabulary Notebook. Share with a peer. Vocabulary Notebook Sample:

| New Word <br> perimeter | My Description <br> the distance around a flat shape |
| :--- | :--- |
| Personal Connection <br> What is the perimeter of your yard? | $\longrightarrow$ |

## Activity <br> Perimeters

## Perimeters

The perimeter of a geometric shape is the distance around the shape. You start at one spot (corner) and then add all the measurements together. For example:


So, if you started at the black dot you would create this problem: $4+2+4+2=12$ feet. Draw several different shapes on the board, labeling the sides (don't draw a circle), and find the perimeters of each of the items. Have children help by coming up and demonstrating understanding at the board.

Show students how to roll the sides of a rectangle or a square. Take two 6 -sided dice and roll them. It the dice rolled are a 3 and a 4 , you will create a rectangle on grid paper that is 3 squares by 4 squares.


If you started at the corner and counted the squares you would create a problem that was 4 $+3+4+3=14$ squares. Students will want to roll the dimension of the rectangle, create a number sentence to show the addition of each of the sides, and then record the perimeter for each rectangle.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

## Directions:

1. Divide students into pairs.
2. Give each pair a sheet of graph paper (attached to this lesson plan), and two 6sided dice.
3. Working together, students roll the dice draw a rectangle that reflects the information on the dice.
4. Pair creates the perimeter equation and writes the perimeter in total number of squares.
5. Activity is over when the grid paper is full.

## Closing

## Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?


## Debrief

## Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity.

## Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.


| Component | Math |
| :--- | :--- |
| Grade Level: | 3rd Grade |
| Lesson Title: | Area |
| Focus: | How Many Squares? |


| Materials: |  |  |
| :---: | :---: | :---: |
| White boards | Vocabulary Notebooks | Dominoes |
| Crayolas | Deck of Cards for each pair |  |
| Activity at the end of this lesson plan Socks (use as erasers) |  |  |


| Opening |
| :--- |
| State the objective |
| Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction, |
| multiplication, and division. We are also going to learn about geometry. |
| Gain prior knowledge by asking students the following questions |
| What do you know about finding the area of a two-dimensional geometric shape? What mathematical operation would you |
| apply in order to find the area? What are you counting when you calculate area? (square units) Area is the space inside of |
| a lined out area. When would you need to know how to calculate area? |


| Content (the "Meat") |  |
| :---: | :---: |
| Problem of the Day <br> Jordan wants to buy ribbon for her hair. The ribbon she wants is $\$ .15$ per inch. She will need 14 inches to make the bow. How much money does she need to buy the ribbon? How do you know? | *Activity $\rightarrow$ Teachable <br> Moment(s) throughout <br> During the lesson check in with students repeatedly. <br> Check in about what is |
| Fact Practice <br> Target <br> 1. Divide students into trios <br> 2. Each trio needs a deck of cards without face cards and jokers <br> 3. Place the cards face up in a TicTac Toe Grid <br> 4. Turn up a $10^{\text {th }}$ card which will be to the side and becomes the target number (aces count as 1) <br> 5. Each player makes an equation with some or all of the numbers in the grid to equal the target number. Students may add or subtract. <br> 6. Each card may be used only one time in the equation <br> 7. As the cards are being picked up, the player must say the equation aloud-for example if the target card is 10 , then I could say $6+4=10$, and pick up the 6 and the 4. <br> 8. After one player finishes his/her turn, then the cards taken are replaced by cards from the remaining deck | happening and what they are thinking. <br> Take advantage of any teachable moments. <br> Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. <br> When possible, engage students in a "teach to learn" opportunity and have the student become the teacher. |

9. Player with the most cards at the end of the game win

## Math Vocabulary

## Word for today: area

Description: Area is a mathematical term that defines the space inside a designated shape.
You count area in square units.

| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |


| 1 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- |
| 2 | 4 | 6 | 9 |

These two shapes have the same area of 9 even though they do not look the same.
Enter the term area into your Vocabulary Notebook. Discuss your entry with your friend.
Vocabulary Notebook Sample:

| New Word <br> area | My Description <br> the number of square units on a surface |
| :--- | :--- |
| Personal Connection <br> What is the area of the yard? | Drawing |

Area
Area tells you the size of a surface. It defines the amount of space inside the boundary of a flat, 2-dimensional object such as a rectangle or a square.
Look at the following shapes:


| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |


| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 5 | 6 | 7 | 8 |

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

All of these shapes have an area of 9 units. They each have the same surface area even though the shapes are different.

When you are calculating area it is done in square units (rather than a perimeter which would just be labeled in squares). Draw several shapes on a large piece of grid paper so students can practice counting the square units and determine the surface area.

## How Many Squares? \#1

Directions:

1. Divide students into pairs.
2. Give each pair a piece of grid paper with shapes outlined on it.
3. Ask students to work together as pairs to determine the number of square units in each of the shapes.
4. Students should write the answer by using a number and the words square unit written after the number.
5. When students are finished, they should share their answers with another pair.


## Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Consult 4 Kids Lesson Plans

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | , |  | - |  |  |  |  | - |  |
|  |  |  |  |  |  |  |  |  |  |  |  | - |  | , |  |  |  |
|  |  |  |  |  |  |  |  | , |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | $\square$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Component | Math |
| :--- | :--- |
| Grade Level: | 3rd Grade |
| Lesson Title: | How Many Squares? |
| Focus: | Geometry |


| Materials: |  |  |
| :--- | :--- | :--- |
| White boards | Vocabulary Notebooks | Materials at end of lesson plan |
| Crayolas | 12-sided dice for each pair | Deck of Card for every 2 students |
| Number Hunt Work Sheet | Socks (for erasers) | Dominoes |


| Opening |
| :--- |
| State the objective |
| Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction, <br> multiplication, and division. We are also going to learn about geometry. <br> Gain prior knowledge by asking students the following questions <br> What do you know about finding the area of a two-dimensional geometric shape? What mathematical operation would you <br> apply in order to find the area? What are you counting when you calculate area? (square units) Area is the space inside of <br> a lined out area. When would you need to know how to calculate area? Draw several shapes on the board and have <br> students calculate area. |

## Content (the "Meat")

## Problem of the Day

How are multiplication and addition alike? When would you use multiplication rather than addition? Explain your thinking.

## Fact Practice

## Number Hunt

1. Divide students into pairs
2. Each pair needs a Number Hunt sheet (attached to this lesson plans)
3. Player rolls two, 12 -sided dice.
4. Player adds or subtracts the two numbers.
5. If the number is not yet covered, then player may cover the number.
6. Next player repeats steps 1-3.
7. Winner is determined by who has the most numbers covered.

## *Activity $\rightarrow$ Teachable Moment(s) throughout

During the lesson check in with students repeatedly.
Check in about what is happening and what they are thinking.
Take advantage of any teachable moments.
Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking.
When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

## Math Vocabulary

## Word for today: area

Description: Area is a mathematical term that defines the space inside a designated shape. You count area in square units.

| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |



These two shapes have the same area of 9 even though they do not look the same.
Revisit the term area into your Vocabulary Notebook. Discuss your entry with your friend.
Vocabulary Notebook Sample:

| New Wordarea | My Description <br> the number of square units on a surface |
| :--- | :--- |
| Personal Connection |  |
| What is the area of the yard? | Drawing |
|  |  | | 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |

## Activity

## Area

## Area

Area tells you the size of a surface. It defines the amount of space inside the boundary of a flat, 2-dimensional object such as a rectangle or a square.
Look at the following shapes:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |


| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 5 | 6 | 7 | 8 |
|  |  |  |  |
|  |  |  |  |

All of these shapes have an area of 9 units. They each have the same surface area even though the shapes are different.

When you are calculating area it is done in square units (rather than a perimeter which would just be labeled in squares). Draw several shapes on a large piece of grid paper so students can practice counting the square units and determine the surface area.

## How Many Squares? \#2

Directions:

1. Divide students into pairs.
2. Give each pair a piece of grid paper.
3. Ask students to create at least 10 shapes on the grid paper and then find another pair to share papers with.
4. Each pair should find the area of the shapes drawn by the other pair.
5. Students should write the answer by using a number and the words square unit written after the number.

|  | Closing |
| :---: | :---: |
|  | Review <br> Say: <br> - Please recap what we did today. <br> - Did we achieve our objectives? |
|  | Debrief <br> Three Whats <br> Ask the following three what questions: <br> What was your key learning for the day? <br> What opportunities might you have to do this same thing in the "real world"? <br> What advice would you give to a "new" student getting ready to do this activity? |

## Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Number Hunt

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |

Number Hunt

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |

3rd Grade How Many Squares \#2

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | $\square$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Component | Math |
| :--- | :--- |
| Grade Level: | 3rd Grade |
| Lesson Title: | What Seems Likely? |
| Focus: | Measurement |

## Materials:

White boards
Crayolas
Activity at the end of the lesson plan deck of cards, no face cards or jokers for math fact practice Socks (use as erasers)

| Opening |
| :--- |
| State the objective |
| Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction, |
| multiplication, and division. We are also learning about measurement. |
| Gain prior knowledge by asking students the following questions |
| Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe |
| those things. What do you know about measurement? What are some of the common units of measurement? (Think in |
| terms of distance, liquid, and time.) What are some of the tools that we use to measure items? |


| Content (the "Meat") |  |
| :---: | :---: |
| $\begin{array}{r} \text { If a } \Delta=3 \text {, what is the value of } O \text { and } \square \text { ? the Day } \\ \square \div \Delta=12 \\ 0 \times 9=\square \end{array}$ | *Activity $\rightarrow$ Teachable Moment(s) throughout <br> During the lesson check in with students repeatedly. <br> Check in about what is happening and what they are thinking. |
| Fact Practice <br> Draw! <br> 1. Divide students into pairs and give each pair a deck of cards <br> 2. Remove the face cards and jokers from the deck of cards. <br> 3. Shuffle the deck. <br> 4. Decide who will go first. <br> 5. First player draws two cards. <br> 6. Student adds or subtracts the cards. <br> 7. Student writes his/her problem on the white board, writing a complete number sentence. <br> 8. Students take turns drawing cards and creating problems. | Take advantage of any teachable moments. <br> Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. <br> When possible, engage students in a "teach to learn" opportunity and have the student become the teacher. |

## Math Vocabulary

## Word for Today: customary measurement

Description: The term "customary measurement" refers to the measurement tools we use in the United States. To measure length and distance we speak in terms of inches, feet, yards, and miles. To measure liquid we speak in terms of ounces, cups, pints, quarts and gallons. To measure time we speak in terms of seconds, minutes, hours, days, weeks, months and years.
Enter the term "customary measurement" in your Vocabulary Notebook. Talk with a peer about what this term means to you.
Vocabulary Notebook Sample:

| New Word <br> customary measurement | My Description <br> way to calculate time, length, and liquid |
| :--- | :--- |
| Personal Connection | Drawing |
| He was given a 2 ounce cup. |  |

## Activity

## Measurement

It is important when we measure things that students have an idea of what unit of measurement should be used. For example, if I want to know the distance from San Diego to Los Angeles, it would not make sense to measure that in inches or feet. It would make sense to measure that distance in miles or kilometers. Students need to be familiar with both the customary system of measurement (inches, feet, yards, miles) and the metric system (centimeters, meters, or kilometers.
Discuss different items that you could measure and have students determine which of the measures would be the most reasonable for both the customary and the metric system.

When looking at the metric system, there are 100 centimeters in a meter. A meter is just longer than a yard, so this means that there are approximately 100 centimeters in a yard.
2.54 centimeters is equal to an inch. If you are looking at a 12 inch ruler, you are looking at approximately 30 centimeters. "Centi" is a prefix that means 100. The abbreviation of centimeter is cm .

A meter is just longer than a yard stick. A yard is 36 inches long and a meter is 1.093 yards long.

A kilometer is 1,000 meters long. Compared to a mile, a kilometer is just about .62 miles.

## What Seems Likely?

## Directions:

1. Divide students into pairs.
2. Give each pair a set of cards with items listed on them.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
3. Working together, pair should determine which customary and which metric measurement would be the best to use to measure each item.
4. When pair is finished, they should join another pair and share the information they have found.

## Closing

## Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?


## Debrief

## Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity?

## Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

## Consult 4 Kids Lesson Plans

3rd Grade What Seems Likely?

| Item | Customary | Metric |
| :--- | :--- | :--- |
| your finger |  |  |
| a city block |  |  |
| a highway |  |  |
| a baby |  |  |
| a road between two cities |  |  |
| a car |  |  |
| a pencil |  |  |
| a railroad track between two stations |  |  |
| a 4 story building |  |  |
| a football field |  |  |
| the Daytona 500 (car race) |  |  |
| an eraser |  |  |
| the distance to Hawaii from Los Angeles |  |  |
| your height |  |  |
| a book |  |  |
| a fork |  |  |
| your front door |  |  |
| a tree |  |  |
| distance to the moon |  |  |


| Component | Math |
| :--- | :--- |
| Grade Level: | 3rd Grade |
| Lesson Title: | What Seems Likes? 2 |
| Focus: | Measurement |

## Materials:

White boards Vocabulary Notebooks dice

Crayolas Double 9 Dominoes
Activity at the end of this lesson plan
Socks (use for erasers)

| Opening |
| :--- |
| State the objective |
| Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction, |
| multiplication, and division. We are learning about measurement. |
| Gain prior knowledge by asking students the following questions |
| Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe |
| those things. What do you know about measurement? What are some of the common units of measurement? (Think in |
| terms of distance, liquid, and time.) What are some of the tools that we use to measure items? |



| Math Vocabulary |  |
| :---: | :---: |
| Word for Today: metric measurement |  |
| Description: The term "metric measurement" refers to the measurement units that are used world-wide. To measure length and distance we speak in terms of centimeters, meters and kilometers. To measure liquid we speak in terms of milliliters, centiliters, and liters. To measure time we speak in terms of seconds, minutes, hours, days, weeks, months and years. |  |
| Enter the term "metric measurement" in your Vocabulary Notebook. Talk with a peer about what this term means to you. <br> Vocabulary Notebook Sample: |  |
| New Word | My Description |
| metric measurement | way to calculate time, length, and liquid |
| Personal Connection | Drawing |
| He was given a 2 milliliter cup . |  |

## Activity Measurement

## Measurement

It is important when we measure things that students have an idea of what unit of measurement should be used. For example, if I want to know the distance from San Diego to Los Angeles, it would not make sense to measure that in inches or feet. It would make sense to measure that distance in miles or kilometers. Students need to be familiar with both the customary system of measurement (inches, feet, yards, miles) and the metric system (centimeters, meters, or kilometers.
Discuss different items that you could measure and have students determine which of the measures would be the most reasonable for both the customary and the metric system.

When looking at the metric system, there are 100 centimeters in a meter. A meter is just longer than a yard, so this means that there are approximately 100 centimeters in a yard.
2.54 centimeters is equal to an inch. If you are looking at a 12 inch ruler, you are looking at approximately 30 centimeters. "Centi" is a prefix that means 100. The abbreviation of centimeter is cm .

A meter is just longer than a yard stick. A yard is 36 inches long and a meter is 1.093 yards long.

A kilometer is 1,000 meters long. Compared to a mile, a kilometer is just about .62 miles.

## What Seems Likely?

## Directions:

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

1. Divide students into pairs.
2. Give each pair a set of cards with items listed on them.
3. Working together, pair should determine which customary and which metric measurement would be the best to use to measure each item.
4. When pair is finished, they should join another pair and share the information they have found.

## Closing

Review
Say:

- Please recap what we did today.
- Did we achieve our objectives?


## Debrief

## Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity?

## Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

## Double 9 Dominoes



|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |


|  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |  |  |  |
| $\bullet$ |
| $\bullet$ |
| $\bullet$ |




| Do not use | $\bullet \bullet 0$ |  | $\bullet$ | - - |
| :---: | :---: | :---: | :---: | :---: |
| Do not use | $\bullet \bullet 0$ |  | ${ }^{-0}{ }^{-0}$ | - ${ }^{-0}$ |
|  | -0 0 | -00 | -00 | -00 |


|  | $\bullet$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\bullet$ |
| $\bullet$ |
| $\bullet \bullet$ | $\bullet$ |
| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet \bullet$ | $\bullet$ | $\bullet$ | 0 | $\bullet$ | $\bullet$ |


| $\bullet \bullet \bullet$ | $\begin{aligned} & \bullet \bullet \bullet \\ & \bullet \bullet \bullet \end{aligned}$ |  | $\bullet$ | - - |
| :---: | :---: | :---: | :---: | :---: |
|  | $000$ | 000 | -00 |  |
| - | - ${ }^{\circ}$ | -00 | -0 | $\bullet 0$ |
| - - | - - | 00 | -0- | -00 |


| - ${ }^{-}$ | $\begin{array}{ll} \bullet & 0 \\ 0 & 0 \end{array}$ |  |  |
| :---: | :---: | :---: | :---: |
| - - | -0 0 | -00 | -00 |
| - 0 | - | -00 | -00 |
| - - 0 | -0. | -00 | $\bigcirc$ |

3rd Grade What Seems Likely?

| Item | Customary | Metric |
| :--- | :--- | :--- |
| your finger |  |  |
| a city block |  |  |
| a highway |  |  |
| a baby |  |  |
| a road between two cities |  |  |
| a car |  |  |
| a pencil |  |  |
| a railroad track between two stations |  |  |
| a 4 story building |  |  |
| a football field |  |  |
| the Daytona 500 (car race) |  |  |
| an eraser |  |  |
| the distance to Hawaii from Los Angeles |  |  |
| your height |  |  |
| a book |  |  |
| a fork |  |  |
| your front door |  |  |
| a tree |  |  |
| distance to the moon |  |  |


| Component | Math |
| :--- | :--- |
| Grade Level: | 3rd Grade |
| Lesson Title: | Round 'Em |
| Focus: | Number Properties |


| Materials: |  |
| :--- | :--- |
| White boards | Vocabulary Notebooks |
| Crayolas | dice (6-sided and 12-sided for each pair) |
| Socks (for erasers) | deck of card (one for every 2 players) |


| Opening |
| :--- |
| State the objective |
| Today we are going to practice using our math vocabulary and practice in the basic. |
| Gain prior knowledge by asking students the following questions |
| Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe |
| those things. What do you know about rounding numbers? Why would you want to round a number? When do you round |
| a number up? When do you leave a number as it is? What do you do when you round a number to hundreds with the |
| numbers in the tens and ones place. |


| Content (the "Meat") |  |
| :---: | :---: |
| Problem of the Day <br> The tables in the outdoor eating area at the school each hold 6 people. If there are 72 children who are there to eat, how many tables will you need? | *Activity $\rightarrow$ Teachable Moment(s) throughout During the lesson check in |
| Fact Practice <br> Fact Family <br> A Fact Family is 3 numbers which have a relationship in addition and subtraction. For example, the number 9,4 , and 13 have a particular relationship in math. This family has four members: $\begin{aligned} & 9+4=13 \\ & 4+9=13 \\ & 13-9=4 \\ & 13-4=9 \end{aligned}$ <br> Students should roll 2 dice and create a Fact Family by writing the members of the family on the white board. Student should roll a total of 5 times, creating 5 Fact Families | with students repeatedly. <br> Check in about what is happening and what they are thinking. <br> Take advantage of any teachable moments. <br> Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher. |


| Math Vocabulary |
| :--- |
| Word for Today: rounding <br> Description: The term rounding refers to a process that you utilize to generally know how <br> many of something there are. Rounding is not as accurate as an actual count, but it is an <br> easier way to think about a number. The general rule is that after you determine the last digit <br> you want to keep, you look at the number to the right of it and if that number is 5 or higher, you <br> round the digit you want to keep to the next digit. If the number to the right is 4 or lower, you <br> leave the digit alone. Then you add zeros to the end. <br> Review the entry in your Vocabulary Notebook for the term subtrahend. Talk with a peer <br> about this word and what it means. <br> Vocabulary Notebook Sample: |
| New Word <br> rounding |
| Wersonal Connection <br> What do you get when you round the <br> number? |

## Rounding Numbers

Rounding a number means reducing the digits in the number while trying to keep the value of the number close to its original value. When you round a number it is easier for you to think about but it is less accurate. For example, if a number is 437, if you were rounding to the nearest ten, you would have 440 ( 3 over the accurate number); and if you were rounding to the nearest hundred, you would round to 400 ( 37 less that the accurate number).

The most common method for rounding a number is to follow these steps:
Decide which is the last digit you want to keep, (tens, hundreds, thousands, etc.).
Increase the digit by 1 if the digit next to it to the right is 5 or more.
Leave the digit as it is if the digit next to it to the right is 4 or less.
Work through several examples with the students. Round to the nearest ten and to the nearest hundred. Practice applying the guidelines. Talk through your thinking when you demonstrate. Bring students up to practice.

## Round 'Em

Directions:

1. Divide students into pairs.
2. Give each pair a deck of Round 'Em cards and a white board to keep score on.
3. Shuffle the cards and place between the students.
4. Player 1 draws a card and looks at the number on the card.
5. The number that is underlined is the last digit the player wants to keep.
6. Player rounds the number following the steps above.
7. If player is correct, he/she gets one point.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.

When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
8. Player 2 continues.
9. Play is over when one of the players reaches 15 points.

|  | Closing |
| :---: | :---: |
|  | Review <br> Say: <br> - Please recap what we did today. <br> - Did we achieve our objectives? |
|  | Debrief <br> Three Whats <br> Ask the following three what questions: <br> What was your key learning for the day? <br> What opportunities might you have to do this same thing in the "real world"? <br> What advice would you give to a "new" student getting ready to do this activity? ? |

## Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.
$3^{\text {rd }}$ Grade Round 'Em

| $1 \underline{29}$ | 187 | $4 \underline{0}$ | 372 |
| :---: | :---: | :---: | :---: |
| 150 | 835 | $\underline{2} 90$ | $\underline{3} 8$ |
| $4 \underline{6} 4$ | $\underline{5}$ | $\underline{518}$ | 850 |
| $4 \underline{2} 3$ | 675 | 949 | 764 |
| $\underline{6} 4$ | 302 | $\underline{2} 88$ | 1, $\underline{6} 87$ |
| 2,408 | 5, $\underline{7}^{7} 2$ | 4, 850 | 8,935 |
| 2,540 | 843 | 3,939 | 1,944 |
| 6,521 | 464 | 1,092 | 7,684 |


| Component | Math |
| :--- | :--- |
| Grade Level: | 3rd Grade |
| Lesson Title: | Round 'Em 2 |
| Focus: | Number Properties |


| Materials: |  |
| :--- | :--- |
| White boards | Vocabulary Notebooks |
| Crayolas | Deck of cards |
| Socks (use as erasers) | Dice |


| Opening |
| :--- |
| State the objective |
| Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction, |
| multiplication, and division. We will also learn about rounding numbers. |
| Gain prior knowledge by asking students the following questions |
| Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe |
| those things. What do you know about rounding numbers? Why would you want to round a number? When do you round |
| a number up? When do you leave a number as it is? What do you do when you round a number to hundreds with the |
| numbers in the tens and ones place. |

## Content (the "Meat")

## Problem of the Day

Joni has 112 apples to make pies with. She will use 8 apples per pie and then sell each pie for $\$ 8$. She will use all of the apples. How much money will she earn? How do you know?

## Fact Practice

## Bump It Up! Add A Zero

1. Divide students into pairs
2. Give each pair a white board and a deck of cards (without face cards, jokers, or 10s)
3. The object of this fact practice is to sum numbers until you reach 1,000 .
4. Student draws 2 cards, adds the value of the cards together, multiplies by ten and writes the total on the sheet.
5. It is not the other person's turn to do the same
6. When play returns to the first player, the process is repeated, although this time, the totals are added together.
7. First person to 1,000 wins.
8. Example: Player draws a 7 and a 4. Total is 11 . Multiply by 10 (add the zero) equals 110. Next turn, player draws a 3 and a 2 which totals 5 . Multiply by 10 and I now add 50 to 110 for a total of 160.

## *Activity $\rightarrow$ Teachable Moment(s) throughout

During the lesson check in with students repeatedly.
Check in about what is happening and what they are thinking.
Take advantage of any teachable moments.

Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking.
When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

| Word for Today: rounding <br> Description: The term rounding refers to a process that you utilize to generally know how <br> many of something there are. Rounding is not as accurate as an actual count, but it is an <br> easier way to think about a number. The general rule is that after you determine the last digit <br> you want to keep, you look at the number to the right of it and if that number is 5 or higher, you <br> round the digit you want to keep to the next digit. If the number to the right is 4 or lower, you <br> leave the digit alone. Then you add zeros to the end. <br> Review the entry in your Vocabulary Notebook for the term subtrahend. Talk with a peer <br> about this word and what it means. <br> Vocabulary Notebook Sample: <br> New Word My Description <br> What do you get when you round the  <br> number?  <br> Personal Connection <br> Whand |
| :--- |

## Activity

## Rounding Numbers

Rounding a number means reducing the digits in the number while trying to keep the value of the number close to its original value. When you round a number it is easier for you to think about but it is less accurate. For example, if a number is 437, if you were rounding to the nearest ten, you would have 440 ( 3 over the accurate number); and if you were rounding to the nearest hundred, you would round to 400 ( 37 less that the accurate number).

The most common method for rounding a number is to follow these steps:
Decide which is the last digit you want to keep, (tens, hundreds, thousands, etc.).
Increase the digit by 1 if the digit next to it to the right is 5 or more.
Leave the digit as it is if the digit next to it to the right is 4 or less.
Work through several examples with the students. Round to the nearest ten and to the nearest hundred. Practice applying the guidelines. Talk through your thinking when you demonstrate. Bring students up to practice.

## Round 'Em

## Directions:

1. Divide students into pairs.
2. Give each pair a deck of Round 'Em cards and a white board to keep score on.
3. Shuffle the cards and place between the students.
4. Player 1 draws a card and looks at the number on the card.
5. The number that is underlined is the last digit the player wants to keep.
6. Player rounds the number following the steps above.
7. If player is correct, he/she gets one point.
8. Player 2 continues.
9. Play is over when one of the players reaches 15 points.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
$\square$

|  | Closing |
| :--- | :--- |
|  | Review |

Say:

- Please recap what we did today.
- Did we achieve our objectives?


## Debrief

## Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity?

## Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Consult 4 Kids Lesson Plans
$3^{\text {rd }}$ Grade Round 'Em

| $1 \underline{29}$ | 187 | $4 \underline{0}$ | 372 |
| :---: | :---: | :---: | :---: |
| 150 | 835 | $\underline{2} 90$ | $\underline{3} 8$ |
| $4 \underline{6} 4$ | $\underline{5}$ | $\underline{5} 18$ | 850 |
| $4 \underline{2} 3$ | $\underline{6} 75$ | 949 | 764 |
| $\underline{6} 4$ | 302 | $\underline{2} 88$ | 1, $\underline{5} 87$ |
| 2,408 | 5, $\underline{7}^{7} 2$ | 4, 850 | 8,935 |
| 2,540 | 843 | 3,939 | 1,944 |
| 6,521 | 464 | 1,092 | 7,684 |


| Component | Math |
| :--- | :--- |
| Grade Level: | 3rd Grade |
| Lesson Title: | Student Activity Choice |
| Focus: | Review |

## Materials:

Game Boards and materials from this week.
Prizes (these can be time, a leadership role, opportunities to be the "teacher"

| Opening <br> $\quad$ State the objective <br> Today we are going to have fun playing a game. Students will be able to choose from the games learned in the past two <br> weeks. |
| :--- |

## Content (the "Meat")

teams
Activity
Today is a review day. Students should select from the following list of activities:
Attributes of Shapes
Roll A Rectangle
How Many Squares? \#1
How Many Squares? \#2
What Seems Likely?
Round 'Em

|  | Closing |
| :--- | :--- |
|  | Review |

Say:

- Please recap what we did today.
- Did we achieve our objectives?


## Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.
