Component	Math
Grade Level:	3rd Grade
Lesson Title:	Converting Units of Time
Focus:	Measurement

Materials:

White boards	Decks of cards	Dominoes (Double 9)
Crayolas	Vocabulary Notebooks	
Socks	Activity at the end of this lesson plan	

Opening
State the objective
Today we are going to practice using our math vocabulary and practice in converting time.

Gain prior knowledge by asking students the following questions

In what ways to we measure time? Which is the smallest common unit of measurement? How do we begin with that unit (second) and build up into years. Fill out a chart together that shows seconds to minutes to hours to days to weeks to years. What tools do we use to measure time?

Content (the "Meat")

Problem of the Day

If you have 32ϕ how many possible coins do you have? Remember there is more than one way to have 32ф.

Fact Practice

Addition War

- Divide students into pairs. Give each pair a deck of cards without face cards and jokers.
- Shuffle the deck and divide the cards evenly between the two players
- On go, the players turn over the cards at the same time
- Students add the 2 numbers that have been turned up
- First person to give the answer either wins the cards because the answer is correct, or has to turn over 2 cards because he/she gave the wrong answer
- At the end of round, students may reshuffle the pile of cards that they have
- Play can continue until one player has all cards or time has called

Math Vocabulary

*Activity \rightarrow Teachable Moment(s) throughout

During the lesson check in with students repeatedly.
Check in about what is happening and what they are thinking.
Take advantage of any teachable moments.
Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking.
When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

It is important to review academic math vocabulary

Description: Converting time is important so you can compare apples to apples. When you are comparing time, start with the smallest amount of time in the combination and convert to that unit. For example if you are working with weeks and days, you would convert to days (you can always back up to weeks). If you are working with hours and days, convert to hours and then work your way back up to larger units.
Enter the term converting time in your Vocabulary Notebook. Share with a friend what the term means. Give an example.
Vocabulary Notebook Sample:

New Word converting time	My Description week = 7 days $=168$ hours
Personal Connection	Drawing
I can convert weeks into hours..	$\mathbf{3 : 3 7}$

Activity

Time

Converting Units of Time

We measure things in a variety of ways. One of the things that we measure is time. We can measure this in seconds, minutes, hours, days, weeks, months, years, decades and centuries. Being able to convert between these difference measures makes it easier for us to plan and organize our time.
Sometimes we will be busy thinking in days, and will be very frustrated trying to schedule time. Then we discover if we were thinking in weeks, it would be much more effective.

Today we are going to work on making conversions between minutes, hours, days, and weeks. It is important to understand that there are 60 minutes in every hour, 24 hours in every day, 7 days in every week. Knowing this will allow you to convert time among these units of measure.
It is also important to know which one of the time measures makes the most sense to use. It is interesting that when a baby is first born we talk about "days old", and as time goes by we progress to "weeks", then "months" and finally "years". How old do you need to be before you leave the $1 / 2$ off of your age in years? There is no particular right answer, but we are all familiar with the practice.

Practice several conversions on the board with students. When they are comfortable with the process they are ready for the activity.

How Much Time?

Directions:

1. Divide students into pairs.
2. Give each pair a deck of How Much Time? cards. Also give the pair a white board.
3. Shuffle the cards and place them face down in a grid that is 5 cards by 4 cards. If there are any remaining cards, place them to the side, face down.
4. Player 1 turns over 2 cards. If they are equivalent, then he/she may pick up the two cards and they can be replaced by other cards in the surplus deck. If they are
often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
not equivalents, he/she turns the cards over and it is Player 2's turn.
5. Player 2 plays in the same way.
6. Play continues until all cards have been matched.

Closing

Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?

Debrief

Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" player getting ready to play this game so he/she could get all the blocks are completed.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.
$3^{\text {rd }}$ Grade How Much Time?

2 weeks and 5 days	6 weeks	4 weeks and 1 day	3 weeks and 9 days
5 weeks and 5 days	4 weeks	19 days	42 days
29 days	30 days	40 days	4 weeks and 13 days
5 weeks and 8 days	2 weeks and 30 days	4 weeks and 5 days	3 weeks and 5 days
1 week and 18 days	41 days	43 days	28 days
33 days	26 days	25 days	44 days

Component	Math
Grade Level:	3rd Grade
Lesson Title:	How Much Time?
Focus:	Measurement

Materials:

White boards
Crayolas
Socks (for erasers)

Decks of cards Vocabulary Notebooks
Activity at the end of this lesson plan

Dominoes (Double 9)

Opening
State the objective
Today we are going to practice using our math vocabulary and practice in converting time.

Gain prior knowledge by asking students the following questions

In what ways to we measure time? Which is the smallest common unit of measurement? How do we begin with that unit (second) and build up into years. Fill out a chart together that shows seconds to minutes to hours to days to weeks to years. What tools do we use to measure time?

Content (the "Meat")

Problem of the Day

Joey has $2 \$ 5$ bills, $4 \$ 1$ bills, 6 quarters, 5 dimes, 8 nickels and 7 pennies. Joey wants to buy a sweater that cost $\$ 16.75$. Does Joey have enough money? How do you know?

Fact Practice

Foreheader

1. Divide students into trios. Give each trio a deck of cards without face cards and jokers.
2. Shuffle the deck and give all of the cards to the referee who will be "judging" the contest
3. On go, players are each handed a card by the referee and WITHOUT looking, put the card face out on his/her forehead
4. The referee adds the two numbers together and states the answer
5. Each player looks at the other person's exposed number and names his/her own number
6. Person who wins (accuracy and time), collects both cards
7. Play continues until all cards are gone.
8. Players can repeat play (if there is another time) with each other so each has an opportunity to be both a player and referee

*Activity \rightarrow Teachable Moment(s) throughout

During the lesson check in with students repeatedly.
Check in about what is happening and what they are thinking.
Take advantage of any teachable moments.
Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking.
When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

Math Vocabulary	
Word for Today: converting time Description: Converting time is important so you can compare apples to apples. When you are comparing time, start with the smallest amount of time in the combination and convert to that unit. For example if you are working with weeks and days, you would convert to days (you can always back up to weeks). If you are working with hours and days, convert to hours and then work your way back up to larger units.	
Enter the term converting time in your Vocabulary Notebook. Share with a friend what the term means. Give an example. Vocabulary Notebook Sample:	
New Word My Description converting time week = 7 days = 168 hours Personal Connection I can convert weeks into hours.. Brawing	

Activity

Time

Converting Units of Time

We measure things in a variety of ways. One of the things that we measure is time. We can measure this in seconds, minutes, hours, days, weeks, months, years, decades and centuries. Being able to convert between these difference measures makes it easier for us to plan and organize our time.
Sometimes we will be busy thinking in days, and will be very frustrated trying to schedule time. Then we discover if we were thinking in weeks, it would be much more effective.

Today we are going to work on making conversions between minutes, hours, days, and weeks. It is important to understand that there are 60 minutes in every hour, 24 hours in every day, 7 days in every week. Knowing this will allow you to convert time among these units of measure.
It is also important to know which one of the time measures makes the most sense to use. It is interesting that when a baby is first born we talk about "days old", and as time goes by we progress to "weeks", then "months" and finally "years". How old do you need to be before you leave the $1 / 2$ off of your age in years? There is no particular right answer, but we are all familiar with the practice.

Practice several conversions on the board with students. When they are comfortable with the process they are ready for the activity.

How Much Time?

Directions:

1. Divide students into pairs.
2. Give each pair a deck of How Much Time? cards. Also give the pair a white board.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
3. Shuffle the cards and place them face down in a grid that is 5 cards by 4 cards. If there are any remaining cards, place them to the side, face down.
4. Player 1 turns over 2 cards. If they are equivalent, then he/she may pick up the two cards and they can be replaced by other cards in the surplus deck. If they are not equivalents, he/she turns the cards over and it is Player 2's turn.
5. Player 2 plays in the same way.
6. Play continues until all cards have been matched.

Closing

Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?

Debrief

Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

3 rd Grade How Much Time?

2 weeks and 5 days	6 weeks	4 weeks and 1 day	3 weeks and 9 days
5 weeks and 5 days	4 weeks	19 days	42 days
29 days	30 days	40 days	4 weeks and 13 days
5 weeks and 8 days	2 weeks and 30 days	4 weeks and 5 days	3 weeks and 5 days
1 week and 18 days	41 days	43 days	28 days
33 days	26 days	25 days	44 days

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Converting Linear Measures
Focus:	Measurement

Materials:

White boards
Crayolas
Cards

Vocabulary Notebooks
Dice
Socks (erasers for white board)
Activity at the end of the lesson plan

Opening
\quad State the objective
Today we are going to practice using our math vocabulary and math skills fractions.
Gain prior knowledge by asking students the following questions
What do you know about customary units of measurement? What are some examples of ways we measure distance?
What do you know about the metric system of measurement? What are some examples of ways to measure distance using the metric system? Which is the smallest unit of measure before breaking things down into fractional parts?

Content (the "Meat")	
Problem of the Day If you have coins that total $\$ 2.43$, and you don't have any silver dollars or $1 / 2$ dollars, what is the smallest number of coins that you can have?	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly.
Fact Practice Fore-header 1. Divide students into trios. Give each trio a deck of cards without face cards and jokers. 2. Shuffle the deck and give all of the cards to the referee who will be "judging" the contest 3. On go, players are each handed a card by the referee and WITHOUT looking, put the card face out on his/her forehead 4. The referee adds the two numbers together and states the answer 5. Each player looks at the other person's exposed number and names his/her own number 6. Person who wins (accuracy and time), collects both cards 7. Play continues until all cards are gone. 8. Players can repeat play (if there is another time) with each other so each has an opportunity to be both a player and referee	Check in about what is happening and what they are thinking. Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

Math Vocabulary
Word for Today: customary measurement
Description: The term customary measurement refers to the system of measurement we
use in the United States. Although we understand the metric system, we are more likely to
speak in terms of inches, feet, yards, and miles instead of centimeters, meters, and
kilometers. There are 12 inches in a foot, three feet in a yard, and 17,760 yards in a mile.
Not only do you need to understand the units of measurement, it is important to understand
which unit of measure is most appropriate to use in which situation.
Create an entry for the term "customary measurement" in your Vocabulary Notebook.
Share with a peer.
Vocabulary Notebook Sample:
New Word My Description customary measurement Drawing Personal Connection A football field is 300 feet long. inches, feet, yards

Conversion of Linear Measures

We also measure length and distance. We usually do this in inches, feet, yards, and miles. You need to know that there are 12 inches in every foot, 3 feet in every yard, and 1,760 yards in every mile. It is also important that you know which of these measuring tools it makes sense to use. For example, you would not want to measure the distance from your house to the store in inches, however, you would not want to measure your hand in miles.

Practice several conversions on the board with students. When they are comfortable with the process they are ready for the activity.

How Long Is It?

Directions:

1. Divide students into pairs.
2. Give each pair a set of How Long Is It cards and a game board. You will also want to give the students a white board.
3. Shuffle the cards.
4. Player 1 draws a card, makes the necessary conversion, locates the correct answer on the game board and marks with a token.
5. Player 2 then continues play in the same way.
6. Game is over when all answers are marked.

It is important to review academic math vocabulary often throughout the day Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation)
Vocabulary Notebooks can be made from $1 / 2$ of a composition book

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Consult 4 Kids Lesson Plans

$3{ }^{\text {rd }}$ Grade How Long Is It?

3 feet 12 inches	5 feet	1 foot and 20 inches	3 feet
8 feet and 1 inch	48 inches	60 inches	32 inches
36 inches	97 inches	2 feet and 10 inches	34 inches
4 feet 2 inches	50 inches	2 feet and 11 inches	35 inches
6 feet and 31 inches	103 inches	2 feet and 1 inch	25 inches
4 feet and 13 inches	59 inches	1 foot and 1 inch	13 inches

How Long Is It? Game Board

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Converting Linear Measurements 2
Focus:	Measurement

Materials:

White boards
Crayolas
Socks (for erasers)

Vocabulary Notebooks
dice

Opening
State the objective
Today we are going to practice using our math vocabulary and practice in converting linear measurements.

Gain prior knowledge by asking students the following questions

What do you know about customary units of measurement? What are some examples of ways we measure distance? What do you know about the metric system of measurement? What are some examples of ways to measure distance using the metric system? Which is the smallest unit of measure before breaking things down into fractional parts?

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Content (the "Meat")}

\hline \begin{tabular}{l}
Problem of the Day

Your job is to teach your friend about congruent figures. Look at the shapes below. Write three questions that will help your friend determine which shapes are congruent.
\square

\square
\square

 \&

*Activity \rightarrow Teachable Moment(s) throughout

During the lesson check in with students repeatedly.

Check in about what is happening and what they are thinking.
\end{tabular}

\hline | Fact Practice |
| :--- |
| Addition Ladder |
| 1. Give each student a white board (include marker or crayola) |
| 2. Student should draw a ladder like the one below |
| 3. Have student roll 2 dice, total the pips and then add that number to each of the | \& | Take advantage of any teachable moments. |
| :--- |
| Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. |
| When possible, engage students in a "teach to learn" opportunity and have the student become the teacher. |

\hline
\end{tabular}

numbers in the ladder, writing the sum to the right of the number

Math Vocabulary

Word for Today: customary measurement

Description: The term customary measurement refers to the system of measurement we use in the United States. Although we understand the metric system, we are more likely to speak in terms of inches, feet, yards, and miles instead of centimeters, meters, and kilometers. There are 12 inches in a foot, three feet in a yard, and 1,760 yards in a mile. Not only do you need to understand the units of measurement, it is important to understand which unit of measure is most appropriate to use in which situation.
Create an entry for the term "customary measurement" in your Vocabulary Notebook. Share with a peer.
Vocabulary Notebook Sample:

New Word customary measurement	My Description inches, feet, yards
Personal Connection A football field is 300 feet long.	Drawing

Activity

Conversion of Linear Measures

We also measure length and distance. We usually do this in inches, feet, yards, and miles. You need to know that there are 12 inches in every foot, 3 feet in every yard, and 1,760 yards in every mile. It is also important that you know which of these measuring tools it makes sense to use. For example, you would not want to measure the distance from your house to the store in inches, however, you would not want to measure your hand in miles.

Practice several conversions on the board with students. When they are comfortable with the process they are ready for the activity.

How Long Is It?

Directions:

1. Divide students into pairs.
2. Give each pair a set of How Long Is It cards and a game board. You will also want to give the students a white board.
3. Shuffle the cards.
4. Player 1 draws a card, makes the necessary conversion, locates the correct answer on the game board and marks with a token.
5. Player 2 then continues play in the same way.
6. Game is over when all answers are marked.

It is important to review academic math vocabulary often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation). Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

3rd Grade How Long Is It?

3 feet 12 inches	5 feet	1 foot and 20 inches	3 feet
8 feet and 1 inch	48 inches	60 inches	32 inches
36 inches	97 inches	2 feet and 10 inches	34 inches
4 feet 2 inches	50 inches	2 feet and 11 inches	35 inches
6 feet and 31 inches	103 inches	2 feet and 1 inch	25 inches
4 feet and 13 inches	59 inches	1 foot and 1 inch	13 inches

How Long Is It? Game Board

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Round Me Off
Focus:	Rounding Numbers

Materials:		
White boards	Vocabulary Notebooks	Dominoes
Crayolas	Deck of Cards for each pair	
Activity at the end of this lesson plan	Socks (use as erasers)	

Opening
State the objective
Today we are going to practice using our math vocabulary and practice in rounding numbers.
Gain prior knowledge by asking students the following questions
What does it mean to round a number off? When would it make sense to do that? When would you not want to round off a number? What are the guidelines for rounding off a number? What would need to be in place for you to raise the target digit? What would need to be in place for you to leave the target number alone?

Content (the "Meat")

Problem of the Day

Joel buys a CD that cost $\$ 7.71$. She gives the clerk a $\$ 10.00$ bill. How much change will she get? How do you know?

Fact Practice

Target

1. Divide students into trios
2. Each trio needs a deck of cards without face cards and jokers
3. Place the cards face up in a TicTac Toe Grid
4. Turn up a $10^{\text {th }}$ card which will be to the side and becomes the target number (aces count as 1)
5. Each player makes an equation with some or all of the numbers in the grid to equal the target number. Students may add or subtract.
6. Each card may be used only one time in the equation
7. As the cards are being picked up, the player must say the equation aloud-for example if the target card is 10 , then I could say $6+4=10$, and pick up the 6 and the 4.
8. After one player finishes his/her turn, then the cards taken are replaced by cards from the remaining deck
9. Player with the most cards at the end of the game win

*Activity \rightarrow Teachable Moment(s) throughout

During the lesson check in with students repeatedly.
Check in about what is happening and what they are thinking.
Take advantage of any teachable moments.

Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking.
When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

Math Vocabulary

Word for today: rounding numbers

Description: Rounding a number means telling you an estimate or "ball park" of what you are including. Rounding a number is more effective that simply a guess, it is a process that helps you apply a rounding strategy consistently. The first step is to determine which digit you want to be the target digit. Then you look at the digit immediately to its right. If the digit is 5 or higher, you change the target number to one more. If the digit is 4 or less, you leave the digit alone. Either way, you change all of the number to the right o the target number to zeros. Enter the term rounding numbers into your Vocabulary Notebook. Discuss your entry with your friend.
Vocabulary Notebook Sample:

New Word rounding numbers	My Description 5 or more go $\uparrow, 4$ or less leave alone
Personal Connection Can you round that number off?	Drawing $356 ~ r o u n d s ~ t o ~ 400 ~$

Activity
 Rounding Numbers

Rounding Numbers

The reason that we round numbers is create a number that is close to the original number that will be easier for us work within our mind. To round a number follow the steps below: Write the number.

Determine the place of the last digit you want to be represented by a digit other than 0 . If the number to the right of this digit is 5 or higher, round the digit up to the next number. If the number to the right of this digit is 4 or less, leave the digit as it is.

For example, in the number 367, I want to leave the digit 3 as the last place. I look to the right and see a 6 so 1 know that I can round the 3 up to a 4 , so my rounded number would be 400. What I would be saying is that 367 is closer to 400 than it is to 300 . Although the number is less accurate, it is easier for me to think about 400 items. I the number was 324 , and I wanted to have a digit other than 3 in the hundreds place, I would look to the right, see the 2 and leave the 3 alone. I would be thinking that 324 is closer to 300 than it is 400 .

Practice several of these problems in which you round numbers with the students. Talk through what you are thinking. When students are comfortable, they are ready to work as a group on the activity.

Round Me Off!

Directions:

1. Divide students into pairs.
2. Give each pair a game board and a deck of Round Me Off cards and game board. You will also want the students to have a white board.

It is important to review academic math vocabulary often throughout the day.
Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
3. Shuffle the cards and place face down between the pair and next to the game board.
4. Player 1 draws a card, rounds the number, and if correct, rolls the die and move his/her token that many spaces on the game board.
5. If he/she is not correct, then the token remains in the same place.
6. Player 2 continues in the same way.
7. Game is over when one player gets to the finish line.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.
$3^{\text {rd }}$ Grade Round Me Off

$\underline{671}$	$\underline{905}$	$\underline{455}$	$\underline{350}$
$\underline{320}$	$\underline{8} 18$	$\underline{789}$	$\underline{348}$
$\underline{402}$	$\underline{467}$	$\underline{769}$	$\underline{\mathbf{7} 10}$
$\underline{\mathbf{7}, 433}$	$\underline{\mathbf{3}, 860}$	$\underline{4,560}$	$\underline{\mathbf{2}, 087}$
$\underline{\mathbf{7}, 500}$	$\underline{\mathbf{9}, 350}$	$\underline{\mathbf{4}, 246}$	$\underline{\mathbf{1}, 500}$
$\underline{\mathbf{7}, 777}$	$\underline{\mathbf{7}, 477}$	$\underline{\mathbf{8}, 745}$	$\underline{\mathbf{5}, 200}$

$3^{\text {rd }}$ Grade Round Me Off

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Round Me Off
Focus:	Rounding Numbers

Materials:		
White boards	Vocabulary Notebooks	Materials at end of lesson plan
Crayolas	12-sided dice for each pair	Deck of Card for every 2 students
Number Hunt Work Sheet	Socks (for erasers)	Dominoes

Opening
\quad State the objective
Today we are going to practice using our math vocabulary and practice in rounding off.
Gain prior knowledge by asking students the following questions
What does it mean to round a number off? When would it make sense to do that? When would you not want to round off a number? What are the guidelines for rounding off a number? What would need to be in place for you to raise the target digit? What would need to be in place for you to leave the target number alone?

Content (the "Meat")	
Problem of the Day Dad is building a sandbox that will be exactly 9 feet wide and 13 feet long. How many feet of wood will Dad need to buy to frame the sandbox? How do you know?	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly.
Fact Practice Number Hunt 1. Divide students into pairs 2. Each pair needs a Number Hunt sheet (attached to this lesson plans) 3. Player rolls two, 12 -sided dice. 4. Player adds or subtracts the two numbers. 5. If the number is not yet covered, then player may cover the number. 6. Next player repeats steps 1-3. 7. Winner is determined by who has the most numbers covered.	Check in about what is happening and what they are thinking. Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.
Math Vocabulary Word for today: rounding numbers	It is important to review academic math vocabulary

Description: Rounding a number means telling you an estimate or "ball park" of what you are including. Rounding a number is more effective that simply a guess, it is a process that helps you apply a rounding strategy consistently. The first step is to determine which digit you want to be the target digit. Then you look at the digit immediately to its right. If the digit is 5 or higher, you change the target number to one more. If the digit is 4 or less, you leave the digit alone. Either way, you change all of the number to the right o the target number to zeros.
Enter the term rounding numbers into your Vocabulary Notebook. Discuss your entry with your friend.
Vocabulary Notebook Sample:

New Word	My Description
rounding numbers	5 or more go $\uparrow, 4$ or less leave alone

Activity Rounding Numbers

Rounding Numbers

The reason that we round numbers is create a number that is close to the original number that will be easier for us work within our mind. To round a number follow the steps below:
Write the number.
Determine the place of the last digit you want to be represented by a digit other than 0 . If the number to the right of this digit is 5 or higher, round the digit up to the next number. If the number to the right of this digit is 4 or less, leave the digit as it is.

For example, in the number 367, I want to leave the digit 3 as the last place. I look to the right and see a 6 so I know that I can round the 3 up to a 4 , so my rounded number would be 400. What I would be saying is that 367 is closer to 400 than it is to 300 . Although the number is less accurate, it is easier for me to think about 400 items. I the number was 324 , and I wanted to have a digit other than 3 in the hundreds place, I would look to the right, see the 2 and leave the 3 alone. I would be thinking that 324 is closer to 300 than it is 400 .

Practice several of these problems in which you round numbers with the students. Talk through what you are thinking. When students are comfortable, they are ready to work as a group on the activity.

Round Me Off!

Directions:

1. Divide students into pairs.
2. Give each pair a game board and a deck of Round Me Off cards and game board. You will also want the students to have a white board.
3. Shuffle the cards and place face down between the pair and next to the game board.
4. Player 1 draws a card, rounds the number, and if correct, rolls the die and move his/her token that many spaces on the game board.
often throughout the day. Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
5. If he/she is not correct, then the token remains in the same place.
6. Player 2 continues in the same way.

Game is over when one player gets to the finish line.

Closing

Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?

Debrief

Three Whats

Ask the following three what questions:
What was your key learning for the day?
What opportunities might you have to do this same thing in the "real world"?
What advice would you give to a "new" student getting ready to do this activity?

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Number Hunt

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Number Hunt

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

$3^{\text {rd }}$ Grade Round Me Off

$\underline{671}$	$\underline{905}$	$\underline{455}$	$\underline{350}$
$\underline{320}$	$\underline{8} 18$	$\underline{789}$	$\underline{348}$
$\underline{402}$	$\underline{467}$	$\underline{769}$	$\underline{710}$
$\underline{\mathbf{7}, 433}$	$\underline{\mathbf{3}, 860}$	$\underline{4,560}$	$\underline{\mathbf{2}, 087}$
$\mathbf{7}, 500$	$\underline{\mathbf{9}, 350}$	$\underline{4,246}$	$\underline{\mathbf{1}, 500}$
$\underline{\mathbf{7}, 777}$	$\underline{\mathbf{7}, 477}$	$\underline{\mathbf{8}, 745}$	$\underline{\mathbf{5}, 200}$

$3^{\text {rd }}$ Grade Round Me Off

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Adding and Subtracting
Focus:	Addition and Subtraction

Materials:	
White boards	Vocabulary Notebooks \quad dice
Crayolas	deck of cards, no face cards or jokers for math fact practice
Activity at the end of the lesson plan \quad Socks (use as erasers)	

Opening			
State the objective			
Today we are going to practice using our math vocabulary and practice in the basic operations of addition and subtraction.			
Gain prior knowledge by asking students the following questions			
Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe			
those things. What do you know about addition? When do you use addition? What do you know about subtraction?			
When do you use this operation? What is the answer to an addition problem called? What is the answer to a subtraction			
problem called?			

Content (the "Meat")

Problem of the Day
Admission to the movies is $\$ 5.50$ for adults and $\$ 3.75$ for children on Saturday afternoon. If a family of 7 goes to the movies (2 adults and the rest kids) , how much will it cost?

Fact Practice

Draw!

1. Divide students into pairs and give each pair a deck of cards
2. Remove the face cards and jokers from the deck of cards.
3. Shuffle the deck.
4. Decide who will go first.
5. First player draws two cards.
6. Student adds or subtracts the cards.
7. Student writes his/her problem on the white board, writing a complete number sentence.
8. Students take turns drawing cards and creating problems.

*Activity \rightarrow Teachable Moment(s) throughout

During the lesson check in with students repeatedly.
Check in about what is happening and what they are thinking.
Take advantage of any teachable moments.
Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking.
When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

Word for Today: operations

Description: The term "operations" refers to such mathematical activities as addition, subtraction, multiplication, and division. Addition and subtraction are reciprocal operations just like multiplication and division are reciprocal. The operations of addition and subtraction have a "recipe" of steps that you follow to complete the process correctly.
Enter the term "operations" in your Vocabulary Notebook. Talk with a peer about what this term means to you.
Vocabulary Notebook Sample:

New Word operations	My Description begin adding and subtracting with the units place
Personal Connection I know how to add and subtract.	Drawing

Activity
 Addition and Subtraction

Addition and Subtraction

We will spend the next four days reviewing addition and subtraction. Some of the addition and subtraction will require regrouping others will not.

Addition and Subtraction

Directions:

1. Divide the students into pairs.
2. Give each pair two decks of cards with face cards, tens, and jokers removed, and one 6 -sided die.
3. Shuffle the cards and place between the students.
4. Player 1 draws $4-6$ cards.
5. Player 1 rolls the dice and if the number 1 odd he/she must create a subtraction problem, if the number is even, he/she must create an addition problem.
6. Player creates and solves the problem and earns 1 point.
7. Player 2 continues in the same way.
8. Game is over when one player reaches 15 points.
academic math vocabulary often throughout the day.
Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Adding and Subtracting
Focus:	Addition and Subtraction

Materials:

White boards Vocabulary Notebooks dice
Crayolas Double 9 Dominoes
Activity at the end of this lesson plan
Socks (use for erasers)

Opening			
State the objective			
Today we are going to practice using our math vocabulary and practice in the basic operations of addition and subtraction.			
Gain prior knowledge by asking students the following questions			
Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe			
those things. What do you know about addition? When do you use addition? What do you know about subtraction?			
When do you use this operation? What is the answer to an addition problem called? What is the answer to a subtraction			
problem called?			

Content (the "Meat")

Problem of the Day

If there are 12 balls thrown out for kids to play with during recess and they are a combination of soccer balls and volley balls, and 7 of the balls are volley balls, what fraction of the balls are for playing soccer? How do you know?

Fact Practice

Spots and Dots

There is a master of Double 9 Dominos attached to this lesson plan. You will need 1 full set for each pair of students in your class. It is recommended that you duplicate on card stock and if possible, laminate for use again in the future.

Players sit across from each other.
Dominoes are between them, face (or spots) down.
Each student draws a domino and writes the addition problem on their white board, adding the numbers represented by the spots Example: Domino drawn is

Addition: $2+3=5$

*Activity \rightarrow Teachable Moment(s) throughout

During the lesson check in with students repeatedly.
Check in about what is happening and what they are thinking.
Take advantage of any teachable moments.
Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking.
When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

Math Vocabulary		It is important to review academic math vocabulary often throughout the day.
Word for Today: operations		
Description: The term "operations" refers to such mathematical activities as addition, subtraction, multiplication, and division. Addition and subtraction are reciprocal operations just		
like multiplication and division are reciprocal. The operations of addition and subtraction have a "recipe" of steps that you follow to complete the process correctly.		Complete the Vocabulary notebook for each word.
		When possible, have
Enter the term "operations" in your Vocabulary Notebook. Talk with a peer about what this term means to you.		students experience the word (Ex. 4 students creating a
Vocabulary Notebook Sample:		right angle, multiple students acting out an equation).
New Word	My Description	Vocabulary Notebooks can
operations	begin adding and subtracting with the units place	composition book.
Personal Connection	Drawing	
I know how to add and subtract.		
Activity Addition and Subtraction		Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.
Addition and Subtraction		
We will spend the next four days reviewing addition and subtraction. Some of the addition and subtraction will require regrouping others will not.		
Addition and Subtraction		
Directions:		
1. Divide the students into pairs.		
2. Give each pair two decks of ca	with face cards, tens, and jokers removed, and one	
3. Shuffle the cards and place bet	the students.	
4. Player 1 draws 4-6 cards.		
5. Player 1 rolls the dice and if the problem, if the number is even,	mber 1 odd he/she must create a subtraction he must create an addition problem.	
6. Player creates and solves the pr	m and earns 1 point.	
7. Player 2 continues in the same way.		

	Closing
Say:	Review
-	
Please recap what we did today.	
Three Whats	
Ask the following three what questions:	
What was your key learning for the day? What opportunities might you have to do this same thing in the "real world"? What advice would you give to a "new" student getting ready to do this activity?	

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Double 9 Dominoes

	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	
	\bullet	\bullet	\bullet	\bullet			
\bullet							
\bullet							
\bullet							

Do not use	$\bullet \bullet 0$		\bullet	- -
Do not use	$\bullet \bullet 0$		${ }^{-0}{ }^{-0}$	- ${ }^{-0}$
	-0 0	-00	-00	-00

| | \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \bullet |
| \bullet |
| $\bullet \bullet$ | \bullet |
| \bullet | \bullet | \bullet | \bullet | $\bullet \bullet$ | \bullet | \bullet | 0 | \bullet | \bullet |

$\bullet \bullet \bullet$	$\begin{aligned} & \bullet \bullet \bullet \\ & \bullet \bullet \bullet \end{aligned}$		\bullet	- -
	000	000	-00	
-	- ${ }^{\circ}$	-00	-0	$\bullet 0$
- -	- -	00	-0-	-00

- ${ }^{-}$	$\begin{array}{ll} \bullet & 0 \\ 0 & 0 \end{array}$		
- -	-0 0	-00	-00
- 0	-	-00	-00
- - 0	-0.	-00	\bigcirc

Component	Math
Grade Level:	3rd Grade
Lesson Title:	The Four Operations
Focus:	Operations

Materials:

White boards
Crayolas
Socks (for erasers)

Vocabulary Notebooks

dice (6-sided and 12-sided for each pair)
deck of card (one for every 2 players)

Opening
State the objective
Today we are going to practice using our math vocabulary and practice in the basic addition, subtraction, multiplication,
and division.

Gain prior knowledge by asking students the following questions

Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe those things. What do you know about addition? What are the steps to completing an addition problem? What do you know about subtraction? What are the steps to completing a subtraction problem? What do you know about multiplication? What are the steps to completing a multiplication problem? What do you know about division? What are the steps to completing a division problem?

Content (the "Meat")	
Pelect one of the following three shapes and then write three clues so a classmate would know which shape you are talking about.	*Activity \rightarrow Teachable Moment(s) throughout Muring the lesson check in
with students repeatedly.	
Check in about what is	
happening and what they are	
thinking.	

Math Vocabulary		
Word for Today: operations Description: The term "operations" refers to such mathematical activities as addition, subtraction, multiplication, and division. Addition and subtraction are reciprocal operations just like multiplication and division are reciprocal. The operations of addition and subtraction have a "recipe" of steps that you follow to complete the process correctly. Enter the term "operations" in your Vocabulary Notebook. Talk with a peer about what this term means to you. Vocabulary Notebook Sample: New Word My Description operations begin adding, subtracting, multiplying and dividing with the units place Personal Connection I know how to do all four operations.		

Addition, Subtraction, Multiplication, Division

The Four Operations

During third grade students learn to add, subtract, multiply and divide.

Four Operations

Directions:

1. Make a list of the numbers between 10 and 25 . Take five 6 -sided dice and roll them. Challenge the students to use the numbers rolled, and add, subtract, multiply or divide to equal the numbers between 10 and 25 . Once the dice have been rolled, they can't be rolled again. All dice must be used in each problem.
2. For example, if I rolled a $3,4,5,2$, and 1 , I would say $3+4+5+2+1=15$. I could also say $3+4-5+2-1=3$ and I would not be able to use that equation because 3 is not within the range of $10-25$.
3. Play is over when team has found a way to mark out every number.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Four Operations 2
Focus:	Operations

Materials:

White boards
Crayolas
Socks (use as erasers)

Vocabulary Notebooks
Deck of cards
Dice

Opening
State the objective
Today we are going to practice using our math vocabulary and practice in the basic operations of addition, subtraction, multiplication, and division.

Gain prior knowledge by asking students the following questions

Math is about intentionally thinking of the relationships between numbers, operations, and the words we use to describe those things. What do you know about addition? What are the steps to completing an addition problem? What do you know about subtraction? What are the steps to completing a subtraction problem? What do you know about multiplication? What are the steps to completing a multiplication problem? What do you know about division? What are the steps to completing a division problem?

Content (the "Meat")	
Problem of the Day A garden plot is 5 yards long and 3 yards wide. What is the perimeter of the garden plot? What is the area of garden plot? How do you know?	*Activity \rightarrow Teachable Moment(s) throughout During the lesson check in with students repeatedly.
Fact Practice Bump It Up! Add A Zero 1. Divide students into pairs 2. Give each pair a white board and a deck of cards (without face cards, jokers, or 10s) 3. The object of this fact practice is to sum numbers until you reach 1,000 . 4. Student draws 2 cards, adds the value of the cards together, multiplies by ten and writes the total on the sheet. 5. It is not the other person's turn to do the same 6. When play returns to the first player, the process is repeated, although this time, the totals are added together. 7. First person to 1,000 wins. 8. Example: Player draws a 7 and a 4. Total is 11 . Multiply by 10 (add the zero) equals 110. Next turn, player draws a 3 and a 2 which totals 5 . Multiply by 10 and I now add	Check in about what is happening and what they are thinking. Take advantage of any teachable moments. Stop the class and focus on a student's key learning or understanding. Ask openended questions to determine what the rest of the group is thinking. When possible, engage students in a "teach to learn" opportunity and have the student become the teacher.

50 to 110 for a total of 160 .	
Word for Today: operations Description: The term "operations" refers to such mathematical activities as addition, subtraction, multiplication, and division. Addition and subtraction are reciprocal operations just like multiplication and division are reciprocal. The operations of addition and subtraction have a "recipe" of steps that you follow to complete the process correctly. Enter the term "operations" in your Vocabulary Notebook. Talk with a peer about what this term means to you. Vocabulary Notebook Sample:	
New Word My Description operations begin adding, subtracting, multiplying and dividing with the units place	
Personal Connection	Drawing

Activity
Addition, Subtraction, Multiplication, Division

The Four Operations

During third grade students learn to add, subtract, multiply and divide.

Four Operations

Directions:

1. Make a list of the numbers between 10 and 25 . Take five 6 -sided dice and roll them. Challenge the students to use the numbers rolled, and add, subtract, multiply or divide to equal the numbers between 10 and 25 . Once the dice have been rolled, they can't be rolled again. All dice must be used in each problem.
2. For example, if I rolled a $3,4,5,2$, and 1 , I would say $3+4+5+2+1=15$. I could also say $3+4-5+2-1=3$ and I would not be able to use that equation because 3 is not within the range of $10-25$.
3. Play is over when team has found a way to mark out every number.

It is important to review academic math vocabulary often throughout the day.
Complete the Vocabulary notebook for each word.
When possible, have students experience the word (Ex. 4 students creating a right angle, multiple students acting out an equation).
Vocabulary Notebooks can be made from $1 / 2$ of a composition book.

Focus on having young people "compete" in pairs or small groups. Once a game is mastered you can utilize it in the "When Homework Is Complete" center.

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.

Component	Math
Grade Level:	3rd Grade
Lesson Title:	Student Activity Choice
Focus:	Review

Materials:

Game Boards and materials from this week.
Prizes (these can be time, a leadership role, opportunities to be the "teacher"

\quadOpening \quad State the objective Today we are going to have fun playing a game. Students will be able to choose from the games learned in the past two weeks.

Content (the "Meat")

teams
Activity
Today is a review lesson. Students should choose from the following activities:
How Much Time?
How Long Is It?
Round Me Off
Addition and Subtraction
Four Operations

Closing

Review

Say:

- Please recap what we did today.
- Did we achieve our objectives?

Reflection (Confirm, Tweak, Aha!)

1. Ask students to think about what they did today in math.
2. Ask them to comment on what they did today was something they already knew how to do. (Confirmation)
3. Ask them to comment on what they did today that was like something they had done before except in one particular way which was new to them. (Tweak)
4. Ask them to comment on something (if anything) they have learned today that was brand new to them.
